

Confidential

®

Cordio® Profiles B50

 Stack Profiles Developer’s Guide

ARM-EPM-127303 3.0

Confidential © Copyright ARM Limited 2016. All rights reserved. Page ii

© Copyright ARM Limited 2016. All rights reserved.

Proprietary notice

This document is protected by copyright and the practice or implementation of the information herein may be
protected by one or more patents or pending applications. No part of this document may be reproduced in any
form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party
patents.

Unless otherwise stated in the terms of the Agreement, this document is provided “as is”. ARM makes no
representations or warranties, either express or implied, included but not limited to, warranties of merchantability,
fitness for a particular purpose, or non-infringement, that the content of this document is suitable for any particular
purpose or that any practice or implementation of the contents of the document will not infringe any third party
patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

Unless otherwise stated in the terms of the Agreement, to the extent not prohibited by law, in no event will ARM
be liable for any damages, including without limitation any direct loss, lost revenue, lost profits or data, special,
indirect, consequential, incidental or punitive damages, however caused and regardless of the theory of liability,
arising out of or related to any furnishing, practicing, modifying or any use of this document, even if ARM has been
advised of the possibility of such damages.

Words and logos marked with ® or TM are registered trademarks or trademarks, respectively of ARM® in the EU
and other countries. Other brands and names mentioned herein may be the trademarks of their respective
owners. Unless otherwise stated in the terms of the Agreement, you will not use or permit others to use any
trademark of ARM.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication
or disclosure of this document complies fully with any relevant export laws and regulations to assure that this
document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as
appropriate”.

Document confidentiality status
This document is Confidential and any use by you is subject to the terms of the agreement between you and
ARM or the terms of the agreement between you and the party authorized by ARM to disclose this document to
you (“Agreement”).

Product status

The information in this document is for a product in development and is not final.

Web address

http://www.arm.com

http://www.arm.com/products/system-ip/cordio-radio-cores/index.php

http://www.arm.com/
http://www.arm.com/products/system-ip/cordio-radio-cores/index.php

Confidential © Copyright ARM Limited 2016. All rights reserved. Page iii

Feedback

ARM limited welcomes feedback on both the product, and the documentation.

Feedback on this document

If you have any comments about this document, please send email to support-cordio-sw@arm.com giving:

• The document title

• The document’s number

• The page number(s) to which your comments refer

• A concise explanation of your comments

General suggestion for additions and improvements are also welcome.

Support and Maintenance
Please contact support-cordio@arm.com regarding any issues with the installation, content or use of this release
and a member of the ARM Product Support Group will log your query in the support database and respond as
soon as possible. Note that Support for this release of the product is only provided by ARM to a recipient who has
a current support and maintenance contract for the product.

Change history

Issue Date Release note part version

1.0 13-March-17 r2p0-10eac0

2.0 11-July-17 r2p1-01eac0

3.0 11-Sept-17 r2p3-00eac0

mailto:support-cordio-sw@arm.com
mailto:support-cordio@arm.com

Confidential © Copyright ARM Limited 2016. All rights reserved. Page iv

Contents

1 CORDIO STACK AND PROFILES ... 1

1.1 Introduction .. 1

1.2 Documentation ... 1

1.2.1 WSF: Software Foundation API .. 1
1.2.2 Stack: Software System .. 1
1.2.3 Stack: Porting Guide.. 1
1.2.4 Stack: API Guides ... 1
1.2.5 Profiles: Sample Application User’s Guide .. 1
1.2.6 Profiles: API Guides .. 1

2 DEVICE ROLES .. 2

2.1 Stack Initialization .. 2

2.2 GAP Central / Master Role .. 3

2.3 GAP Peripheral / Slave Role ... 4

2.4 GATT Client ... 5

2.5 GATT Server .. 6

2.6 Advertising Only ... 6

3 BUFFER / POOL MANAGEMENT .. 7

3.1 Configuring Buffer Pools .. 7

3.2 Pool Analysis and Optimization ... 7

4 SECURITY ... 8

4.1 Security Manager Configuration .. 8

5 DATA AND THROUGHPUT .. 10

5.1 MTU Payload Size ... 10

5.2 Negotiated MTU Size ... 10

5.3 Maximize Throughput .. 10

6 BLUETOOTH 5.0 SUPPORT .. 12

6.1 Advertising Extensions .. 12

6.2 2Mbps PHY .. 12

7 SYSTEM CONFIGURATION ... 13

7.1 Stack Configuration Options .. 13

7.1.1 HCI_TX_DATA_TAILROOM ... 13
7.1.2 DM_CONN_MAX ... 13
7.1.3 DM_SYNC_MAX ... 13
7.1.4 DM_NUM_ADV_SETS .. 13
7.1.5 DM_NUM_PHYS ... 13

7.2 HCI Flow Control ... 13

8 PERSISTENT MEMORY ... 14

8.1 Application Database ... 14

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 1

1 CORDIO STACK AND PROFILES

1.1 Introduction
The Cordio Stack, Cordio Profiles, and Wireless Software Foundation (WSF) IP together provide a fully compliant
Bluetooth low energy solution complete with user documentation and sample application projects. This system
solution is designed to work standalone, or with a proprietary or off-the-shelf embedded OS. The following section
summarizes the documentation included as part of the Cordio Stack and Profiles IP deliverables. This
Developer’s Guide provides more in-depth information when developing a Bluetooth low energy application based
on Cordio SW IP.

1.2 Documentation
The following documentation outlines the components, subsystems, API, and porting guidelines for Cordio Stack,
Cordio Profiles, and the WSF.

1.2.1 WSF: Software Foundation API

The Software Foundation API document describes the functions provided by the WSF, a simple OS wrapper,
porting layer, and general-purpose software service used by the Cordio embedded software system. This
document is simply an API guide. Information discussing porting the WSF can be found in the Cordio Stack
Porting Guide. Information on tuning and configuring the WSF in accordance with specific application
requirements can be found in later sections of this document.

1.2.2 Stack: Software System

The Stack Software System document describes the building blocks and integration of the Cordio Stack and
Profiles IP to build a compliant Bluetooth low energy product. Specifically this document describes the system
architectural breakdown, interface and flow of data between components.

1.2.3 Stack: Porting Guide

The Stack Porting Guide provides detail for porting the WSF and HCI interfaces and services to a target system.

1.2.4 Stack: API Guides

The Cordio Stack deliverable includes API documentation on the following subsystem components: Device
Manager (GAP), Security Manager (SMP), Attribute Protocol, L2CAP, and HCI.

1.2.5 Profiles: Sample Application User’s Guide

The Sample App User’s Guide provides an overview of the sample applications, including profiles and services,
provided as part of the Cordio Profiles IP. It describes the interface to these applications, outlines the design
model and configuration infrastructure for interacting with the Cordio Stack, and walks through example
application code to better outline how everything fits together.

1.2.6 Profiles: API Guides

The Cordio Profiles deliverable includes API documentation on the following subsystem components: Application
Framework, Profiles and Services.

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 2

2 DEVICE ROLES

The Cordio Stack can be configured to support GAP Master (central) and/or GAP Slave (peripheral) functionality.
A device can also be configured to operate as a GATT Client and/or GATT Server. From the application
perspective a device may operate in any combination of these roles, including supporting master and slave, and
client and server simultaneously. The responsibility falls on the application to configure and manage whatever
combination of roles and responsibilities are required by the device. This section provides some insight and
guidelines as to how to configure device roles when building an application.

2.1 Stack Initialization
For all roles the stack must first initialize the needed stack components by setting up handlers and calling the
initialization for each component that will be utilized. In our sample applications this occurs during the

StackInit<app>(void) function call. Table 1 : Stack Initialization Functions defines the components that may need to

be called during initialization.

Function Role Description

SecInit() All Connectable Roles Initialize general security

SecAesInit() All Connectable Roles Required when AES security is utilized

SecCmacInit() All Connectable Roles Required when CMAC operations utilized

SecEccInit() All Connectable Roles Required when ECC security is utilized

DmAdvInit() GAP Slave Initialize advertising device

DmDevPrivInit() GAP Slave / Master Initialize device privacy module

DmExtAdvInit() 5.0: GAP Slave Initialize DM extended advertising

DmExtConnMasterInit() 5.0: GAP Master Initialize DM connection manager for operation as
extended master

DmExtConnSlaveInit() 5.0: GAP Slave Initialize DM connection manager for operation as
extended slave

DmExtScanInit() 5.0: GAP Master Initialize DM extended scanning

DmScanInit() GAP Master Initialize scanning device

DmConnInit() GAP Connectable Initialize connectable device

DmConnSlaveInit() GAP Connectable Slave Initialize connectable slave

DmConnMasterInit() GAP Connectable Master Initialize connectable master

DmSecInit() GAP Security Initialize legacy security

DmSecLescInit() GAP Enhanced Security Initialize LESC security

DmPrivInit() GAP Privacy Initialize RPA security

DmPhyInit() 5.0: GAP Phy Initialize PHY interface

AttsInit() GATT Server Initialize ATT manager for Server

AttsIndInit() GATT Server Initialize indications and notifications

AttsSignInit() GATT Server Initialize data signing

AttcInit() GATT Client Initialize ATT manager for Client

AttcSignInit() GATT Client Initialize data signing

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 3

SmpiScInit() SMP Initiator Initialize SMP manager for Initiator

SmprScInit() SMP Responder Initialize SMP manager for Responder

L2cInit() ALL Initialize L2CAP

L2cSlaveInit() GAP Slave Initialize L2CAP Slave side

L2cMasterInit() GAP Master Initialize L2CAP Master side

L2cCocInit() L2CAP COC Initialize connection oriented channel

Table 1 : Stack Initialization Functions

2.2 GAP Central / Master Role
A Central / Master device is responsible for scanning for advertisements (Observer role) and when appropriate,
initiating a connection, pairing, and potentially bonding with a Peripheral device.

To configure the stack to support functionality required by the Central role, the <app>_main.c must define
(discussed in Sample App User’s Guide) and setup the master configuration pointers (below) and initialize the
application subsystem by calling the appropriate stack initialization functions from Table 1 above.

 /* Set configuration pointers */
 pAppMasterCfg = (appMasterCfg_t *) &datcMasterCfg;
 pAppSecCfg = (appSecCfg_t *) &datcSecCfg;
 pAppDiscCfg = (appDiscCfg_t *) &datcDiscCfg;
 pAppCfg = (appCfg_t *)&datcAppCfg;
 pSmpCfg = (smpCfg_t *) &datcSmpCfg;

 /* Initialize application framework */
 AppMasterInit();
 AppDiscInit();

The application must also wire up the master application callback and then in the application handler utilize the
AppMaster* API defined in app_api.h (see App Framework API) to process connection, security related, and
discovery events.

/* process DM messages */
else if (pMsg->event <= DM_CBACK_END)
{
 /* process advertising and connection-related messages */
 AppMasterProcDmMsg((dmEvt_t *) pMsg);

 /* process security-related messages */

 AppMasterSecProcDmMsg((dmEvt_t *) pMsg);

When operating as a Central it is the responsibility of the application to initiate scanning.

 AppScanStart(datcMasterCfg.discMode, datcMasterCfg.scanType,
 datcMasterCfg.scanDuration);

If desired the application can initiate a connection based on the received scan report. Note the application must
stop scanning before opening a connection (our sample code will use the scan report to save information on the
device it wishes to connect with and then stop scanning, using the DM_SCAN_STOP_IND to trigger the
connection procedure).

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 4

case DM_SCAN_REPORT_IND:
 datcScanReport(pMsg);
 break;

case DM_SCAN_STOP_IND:
 datcScanStop(pMsg);
 uiEvent = APP_UI_SCAN_STOP;
 break;

The application support layer provies an interface for initiating a connection as a Master. This api returns the
dmConnId_t structure (uint8_t) used to store the connection ID that is used for subsequent communication on this
connection.

dmConnId_t AppConnOpen(uint8_t addrType, uint8_t *pAddr, appDbHdl_t dbHdl);

Finally when operating as a GAP Central a device will also assume the role of the SMP Initiator. This requires
calling the initialization interface and setting the appropriate SMP configuration parameters.

/*! SMP security parameter configuration */
static const smpCfg_t tagSmpCfg =
{
 3000, /*! 'Repeated attempts' timeout in msec */
 SMP_IO_NO_IN_NO_OUT, /*! I/O Capability */
 7, /*! Minimum encryption key length */
 16, /*! Maximum encryption key length */
 3, /*! Attempts to trigger 'repeated attempts' timeout */
 0 /*! Device authentication requirements */
};

2.3 GAP Peripheral / Slave Role
A Peripheral / Slave device is responsible for advertising (Broadcaster role) and handling a connection attempt
from a Central / Master device. To configure the stack to support functionality required by the Peripheral role, the
<app>_main.c must define (discussed in Sample App User’s Guide) and setup the slave configuration pointers
(below) and initialize the application subsystem by calling the appropriate stack initialization functions listed in
Table 1 above.

 /* Set configuration pointers */
 pAppAdvCfg = (appAdvCfg_t *) &fitAdvCfg;
 pAppSlaveCfg = (appSlaveCfg_t *) &fitSlaveCfg;
 pAppSecCfg = (appSecCfg_t *) &fitSecCfg;
 pAppUpdateCfg = (appUpdateCfg_t *) &fitUpdateCfg;

 /* Initialize application framework */
 AppSlaveInit();

The application must also wire up the slave application callback and then in the application handler utilize the
AppSlave* API defined in app_api.h (see App Framework API) to process connection, security related and
discovery events.

 /* process DM messages */
 else if (pMsg->event <= DM_CBACK_END)
 {
 /* process advertising and connection-related messages */
 AppSlaveProcDmMsg((dmEvt_t *) pMsg);

 /* process security-related messages */
 AppSlaveSecProcDmMsg((dmEvt_t *) pMsg);

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 5

 /* process discovery-related messages */
 AppDiscProcDmMsg((dmEvt_t *) pMsg);
 }

When operating as a Peripheral it is the responsibility of the application to initiate advertising.

 /* start advertising; automatically set connectable/discoverable mode and bondable mode */
 AppAdvStart(APP_MODE_AUTO_INIT);

The application must also update the peer address information when a connection is established. Note the
DM_CONN_OPEN_IND message contains the connection ID (dmConnId_t) in the messages hdr-param field
which can be used for subsequent communication on this connection.

 case DM_CONN_OPEN_IND:
 tagOpen(pMsg);
 uiEvent = APP_UI_CONN_OPEN;
 break;

Finally when operating as a GAP Peripheral a device will also assume the role of the SMP Responder. This
requires calling the initialization interface and setting the appropriate SMP configuration parameters.

/*! SMP security parameter configuration */
static const smpCfg_t tagSmpCfg =
{
 3000, /*! 'Repeated attempts' timeout in msec */
 SMP_IO_NO_IN_NO_OUT, /*! I/O Capability */
 7, /*! Minimum encryption key length */
 16, /*! Maximum encryption key length */
 3, /*! Attempts to trigger 'repeated attempts' timeout */
 0 /*! Device authentication requirements */

};

2.4 GATT Client
To act as a GATT Client for GATT Discovery the application must enumerate a list of services to be discovered
and define a handle list for maintaining the handles of discovered service attributes.

/*! Discovery states: enumeration of services to be discovered */
enum
{
 DATC_DISC_GATT_SVC, /*! GATT service */
 DATC_DISC_GAP_SVC, /*! GAP service */
 DATC_DISC_WP_SVC, /*! Wicentric proprietary service */
 DATC_DISC_SVC_MAX /*! Discovery complete */
};

/*! Pointers into handle list for each service's handles */
static uint16_t *pDatcGattHdlList = &datcCb.hdlList[DATC_DISC_GATT_START];
static uint16_t *pDatcGapHdlList = &datcCb.hdlList[DATC_DISC_GAP_START];
static uint16_t *pDatcWpHdlList = &datcCb.hdlList[DATC_DISC_WP_START];

During discovery these handle lists are populated so a Client can read/write attributes.

/* discover proprietary data service */
WpcP1Discover(connId, pDatcWpHdlList);

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 6

To receive indications / notifications the application must configure the appropriate CCCD upon completing
discovery.

/* start configuration */
AppDiscConfigure(connId, APP_DISC_CFG_START, DATC_DISC_CFG_LIST_LEN,

 (attcDiscCfg_t *) datcDiscCfgList, DATC_DISC_HDL_LIST_LEN, datcCb.hdlList);

2.5 GATT Server
To configure the GATT Server for GATT Discovery a device’s application in general will share a list of services
supported as part of its advertisememt and will register the CCCDs for supported services with ATT.

AttsCccRegister(FIT_NUM_CCC_IDX, (attsCccSet_t *) fitCccSet, fitCccCback);

A Server application must also handle the case where CCCD values are changed to ensure that attributes are
notified / indicated as appropriate.

static void fitProcCccState(fitMsg_t *pMsg)
{

APP_TRACE_INFO3("ccc state ind value:%d handle:%d idx:%d", pMsg->ccc.value, pMsg->ccc.handle, pMsg->ccc.idx);

 /* handle heart rate measurement CCC */
 if (pMsg->ccc.idx == FIT_HRS_HRM_CCC_IDX)
 {
 if (pMsg->ccc.value == ATT_CLIENT_CFG_NOTIFY)
 {

The application must register its ATT services with the GATT server:

 /* Initialize attribute server database */

 SvcCoreAddGroup();

 SvcHrsCbackRegister(NULL, HrpsWriteCback);

 SvcHrsAddGroup();

 SvcDisAddGroup();

 SvcBattCbackRegister(BasReadCback, NULL);

 SvcBattAddGroup();

 SvcRscsAddGroup();

2.6 Advertising Only

When implementing a minimal advertising only device the subsystem initialization for connections and GATT/ATT

are not required. In addition you will not require code for security, key and device management, or services and

the discovery process. To minimize code size you will need to ensure that you are not initializing or calling any

unnecessary initialization functions to avoid compiling in those libraries.

When calling AppSetAdvType(uint8_t advType) the type should be set to DM_ADV_NONCONN_UNDIRECT.

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 7

3 BUFFER / POOL MANAGEMENT

The WSF buffer management service is a pool-based dynamic memory allocation service. The buffer service
interface is defined in file wsf_buf.h. You can learn more about the buffer management system in the Software
Foundation API.

3.1 Configuring Buffer Pools
The buffer pools are configured as part of the application system configuration.

/*! \brief Number of WSF buffer pools. */

#define WSF_BUF_POOLS 4

/*! \brief Buffer size. */

#define ACL_BUF_SIZE 256

/*! \brief Total number of buffers. */

#define NUM_BUFS 8

/*! \brief Default pool descriptor. */

static wsfBufPoolDesc_t mainPoolDesc[WSF_BUF_POOLS] =

{

 { 16, 8 },

 { 32, 8 },

 { 64, 8 },

 { ACL_BUF_SIZE, NUM_BUFS }

Buffer allocation is a system configuration and the WSF buffer interface supports allocating one or more buffer
pools for use by the application and protocol stack as desired. However in general we recommend choosing the
size and number of buffer pools to coincide with application requirements. Below you will find additional
information on collecting pool statistics while running your application to better tune buffer pool settings. We also
note that while the buffer memory does not need to be a power of 2, it does need to be word aligned (4 bytes for
ARM Cortex M).

3.2 Pool Analysis and Optimization
When the stack or application requests a buffer the WSF buffer allocation attempts to locate an available buffer
from the smallest pool that meets the minimum size criteria. If no buffers are available from the ideal pool the
allocation mechanism will then allocate from larger pools based on availability. As a result an improperly sized
system is likely to waste valuable RAM if the buffer pools are not configured in accordance with application and
system requirements. To address this issue the WSF IP includes diagnostic functions (see Software Foundation
API) to monitor and tune buffer configuration in accordance with application requirements.

To enable buffer statistics set WSF_BUF_STATS to TRUE. This will enable statistics on the buffer pool to be
collected while a device is operational. Statistics collected include the number of buffers currently allocated, the
maximum allocations from a buffer pool, and the maximum size buffer allocated from each pool. These statistics
can then be accessed using the WsfBufGetPoolStats(…); interface. After running your application and executing as

much potential functionality as the device supports, these buffer pool statistics can be accessed and analyzed. If
it is found that the number of allocations is maxing out within a buffer pool than the system is likely utilizing buffers
from a larger pool unnecessarily. To address this you should adjust the number of buffers for a given pool and re-
run the application. If it is found that the maximum required buffer from a pool is less than the size of the buffers
in that pool than you can reduce the buffer sizes for that pool accordingly as the extra memory set aside is not
being utilized.

In addition you can enable WSF_BUF_STATS_HIST to enable a histogram of buffer pool statistics. This enables
tracking buffer allocations through a 128 byte array indexed by length of the allocated buffer. Collected data can
be accessed through

uint8_t *WsfBufGetAllocStats(void)

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 8

4 SECURITY

Bluetooth low energy supports data encryption used to prevent passive and active man-in-the-middle (MITM)
eavesdropping attacks on a link. In order to establish shared keys for encryption Bluetooth low energy devices
must pair and exchange various keys depending on security requirements. Pairing is carried out in three phases:

1. Two connected devices announce their input and output capabilities and from that information determine
a suitable method for the next phase.

2. A Short Term Key (STK) is generated and used in the final phase to secure long term key distribution.
3. Up to three keys are distributed using the STK. This includes the Long Term Key (LTK) used for Link

Layer encryption and authentication; the Connection Signature Resolving Key (CSRK) used for data
signing at the ATT layer; the Identity Resolving Key (IRK) used to generate and resolve Private Random
Addresses (RPAs).

Bluetooth low energy also supports Out Of Band (OOB) Pairing, where instead of the previously mentioned 3
phase key exchanges the required secret keys are exchanged using another communication medium such as
Near Field Communication (NFC). For more information on security see the latest Bluetooth core specification.

4.1 Security Manager Configuration
STK key generation and exchange depends on a device’s input and output capabilities. To configure I/O
capabilities for an application set the appropriate I/O capability in the smpCfg_t parameter set. Supported I/O
capabilities are:

/*! I/O capabilities */
#define SMP_IO_DISP_ONLY 0x00 /*! DisplayOnly */
#define SMP_IO_DISP_YES_NO 0x01 /*! DisplayYesNo */
#define SMP_IO_KEY_ONLY 0x02 /*! KeyboardOnly */
#define SMP_IO_NO_IN_NO_OUT 0x03 /*! NoInputNoOutput */
#define SMP_IO_KEY_DISP 0x04 /*! KeyboardDisplay */

To enable security upon connection set the initiateSec parameter of appSecCfg_t to TRUE and set the authentication

and bonding flags (auth).

/*! Pairing authentication/security properties bit mask */
#define DM_AUTH_BOND_FLAG SMP_AUTH_BOND_FLAG /*! Bonding requested */
#define DM_AUTH_MITM_FLAG SMP_AUTH_MITM_FLAG /*! MITM (authenticated pairing) requested */
#define DM_AUTH_SC_FLAG SMP_AUTH_SC_FLAG /*! LE Secure Connections requested */
#define DM_AUTH_KP_FLAG SMP_AUTH_KP_FLAG /*! Keypress notifications requested */

Also set the initiator (master) key distribution (iKeyDist) and the responder (slave) key distribution (rKeyDist) flags.

/*! Key distribution bit mask */
#define DM_KEY_DIST_LTK SMP_KEY_DIST_ENC /*! Distribute LTK used for encryption */
#define DM_KEY_DIST_IRK SMP_KEY_DIST_ID /*! Distribute IRK used for privacy */
#define DM_KEY_DIST_CSRK SMP_KEY_DIST_SIGN /*! Distribute CSRK used for signed data */

Resolvable Public Addresses (RPAs) are used when an IRK is present. If a device enables IRK key distribution it
must also configure the stack with a specified IRK. This is accomplished by first defining a 16 byte IRK

/*! local IRK */
static uint8_t localIrk[] =
{
 0xA6, 0xD9, 0xFF, 0x70, 0xD6, 0x1E, 0xF0, 0xA4, 0x46, 0x5F, 0x8D, 0x68, 0x19, 0xF3, 0xB4, 0x96

};

and during system initialization registering the IRK with the Device Manager (DM).

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 9

/* Set IRK for the local device */

DmSecSetLocalIrk(localIrk);

As part of Privacy 1.2, the LL can also generate and resolve RPA’s. If the RPA is not resolved by the Controller, it
is then the responsibility of the application to utilize a peer device’s IRK to resolve the RPA when appropriate

/* if the peer device uses an RPA */
else if (DM_RAND_ADDR_RPA(pMsg->scanReport.addr, pMsg->scanReport.addrType))
{
 /* reslove advertiser's RPA to see if we already have a bond with this device */
 AppMasterResolveAddr(pMsg, APP_DB_HDL_NONE, APP_RESOLVE_ADV_RPA);

}

When configuring a device to use a Resolve Private Address (RPA) the application should call
DmAdvPrivStart(uint16_t changeInterval) with the changeInterval in seconds. This will automatically enable the use
of LL privacy, if supported.

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 10

5 DATA AND THROUGHPUT

This section discussed how to maximize data throughput with the Cordio Stack and Profiles.

5.1 MTU Payload Size
The permitted MTU size is going to depend on the capabilities of both master and slave. During pairing the MTU
exchange will determine the maximum size supported, which is the lesser of the supported MTU sizes of both
devices. To configure the MTU payload size supported by the Cordio Stack set the <app>AttCfg’s 2nd parameter,
the desired ATT MTU size. Note: If the application does not contain a <app>AttCfg structure then one should be
created.

const attCfg_t tagAttCfg = { … }

This structure must then be configured during application initialization.

pAttCfg = (attCfg_t *) &tagAttCfg;

In addition since the stack does not allow us to send packets into the HCI unless we are also capable of receiving
a packet of the same size (minus overhead), we also need to configure the HCI on the read side to be able to
handle a packet of the configured size + 4 bytes of ATT overhead.

HciSetMaxRxAclLen(size);

Once this is done the application is now capable of sending payloads of the configured size to the controller to be
sent. Please note that other considerations that must be taken into consideration are the supported maximum
MTU size specified by the version of the stack being utilized, the Controller’s maximum supported buffer sizes for
receiving packets over HCI, as well as fragmentation features in L2CAP, HCI, and in the Controller itself. For
example the HCI_OPCODE_LE_READ_BUF_SIZE is used to determine the maximum size packet the controller
can receive over HCI and any packet larger than this size will be discarded by the Controller.

5.2 Negotiated MTU Size

While connecting peer devices go through a negotiation of the maximum supported MTU size. In the case that

this negotiated size is greater than the set default value the stack will issue a callback notifying the application of

this negotiated maximum. The handler for application callbacks (<app>ProcMsg(…)) requires a case for the

ATT_MTU_UPDATE_IND to handle this event. The mtu size information can be extracted from the attEvt_t structure’s

mtu field (pMsg->mtu).

5.3 Maximize Throughput
There are many considerations when attempting to maximize throughput at the application layer including the
supported version and features of the Controller on both sides of the link as well as buffer allocation and HCI
configuration limitations. What follows is a general guideline for maximizing application throughput.

In general to maximize throughput at the application layer we want to fill up the controller’s buffers as quickly as
possible and keep them as full as possible so the utilization of the time allocated on the PHY for communication
between the two devices is maximized. We want to maximize the payload size to reduce overhead as much as
possible. Note that the limit here is going to be the maximum allowable packet size supported by and negotiated
by both devices (see previous section). Finally at the application layer we want to package data into maximum
packets (which will get fragmented at the HCI layer and in the Controller). However these packets can’t be so big
that they create memory problems or overrun the stacks ability to receive a similar size packet.

One influential configuration parameter negotiated between the Master and Peripheral devices is the connection
interval. On the one hand the Controller can increase the connection interval to a maximum value allowing more
unacknowledged packets (Notifications and Write Commands) to be sent per connection interval, thereby

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 11

minimizing time “wasted” in sleep and PHY management overhead. On the other hand if you want to have the
ability to maximize throughput of packets such as Indications and Write Requests then you want to set the
connection interval to a minimum since the protocol limits the sendings of these packet types to a single
handshake exchange per connection interval.

In configuring the stack for maximum throughput we also want to understand the maximum packet that can be
received by the Controller over HCI. To do this we read the LE_READ_BUF_SIZE during system reset. This
provides a limit on the size that the Controller can accept, so anything larger passed to HCI will have to be
fragmented first. We then need to configure the application to maximize the supported MTU size in
correspondence with the maximum packet size supported by the Controller and the number of supported buffers.
For example if the Controller supports a maximum packet of 256 bytes and there are 4 buffers available, then the
application could send a payload of (256 x 4 – 4 [payload overhead]) 1020 bytes which would get fragmented at
the HCI layer and passed to the Controller in 4 separate payloads. This would essentially keep the Controller
buffers full and maximize use of the channel. See Section 5.1 for more information on configuring MTU size.

Once this is done the application is now configured to send the maximum payload size capable of being buffered
in the Controller. In general to maximize throughput you will need to use Notifications when sending data, as
Indications require acklowledgement before another message can be sent and therefore add significant overhead
and delay.

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 12

6 BLUETOOTH 5.0 SUPPORT

Licensees of Cordio BT5 Stack and Cordio BT5 Profiles software IP can enable Bluetooth 5 features within the
protocol stack. Enhanced features include support for enabling the 2 Mbps and Long Range (coded PHY) modes
of operation, enabling use of Advertising Extensions including support for periodic advertising and scanning, and
more. This section discusses these included features including how to enable them.

6.1 Advertising Extensions
To enable advertising extensions for an application configuration currently utilizing legacy advertising on the Slave
side simply replace the DmAdvInit() initialization call with one to DmExtAdvInit() and replace the DmConnMasterInit()
call with one to DmExtConnMasterInit(). Similarly enable advertising extensions on the Master side by replacing
DmScanInit() with DmExtScanInit() and DmConnSlaveInit() with DmExtConnSlaveInit() during system startup. When
configuring the advertising type through AppSetAdvType(advType) you can also use the Extended Advertising type’s
defined in dm_api.h.

Name Value Description

DM_EXT_ADV_CONN_UNDIRECT 5 Connectable undirected advertising.

DM_EXT_ADV_NONCONN_DIRECT 6 Non-connectable and non-scannable directed advertising

DM_EXT_ADV_SCAN_DIRECT 7 Scannable directed advertising

In addition to the legacy DM API’s, the following API can be utilized for an advertising device utilizing AE features:

void DmPerAdvConfig(uint8_t advHandle)
void DmPerAdvSetData(uint8_t advHandle, uint8_t op, uint8_t len, uint8_t *pData)
void DmPerAdvStart(uint8_t advHandle)
void DmPerAdvStop(uint8_t advHandle)
void DmAdvSetRandAddr(uint8_t advHandle, const uint8_t *pAddr)
void DmAdvUseLegacyPdu(uint8_t advHandle, bool_t useLegacyPdu)
void DmAdvOmitAdvAddr(uint8_t advHandle, bool_t omitAdvAddr)
void DmAdvIncTxPwr(uint8_t advHandle, bool_t incTxPwr, int8_t advTxPwr)
void DmAdvSetPhyParam(uint8_t advHandle, uint8_t priAdvPhy, uint8_t secAdvMaxSkip, uint8_t secAdvPhy)
void DmAdvScanReqNotifEnable(uint8_t advHandle, bool_t scanReqNotifEna)
void DmAdvSetFragPref(uint8_t advHandle, uint8_t fragPref)
void DmPerAdvSetInterval(uint8_t advHandle, uint16_t intervalMin, uint16_t intervalMax)
void DmPerAdvIncTxPwr(uint8_t advHandle, bool_t incTxPwr)
bool_t DmAdvModeExt(void)

In addition to the legacy DM API’s, the following API can also be utilized by a scanning device utilizing AE
features:

void DmSyncStart(uint8_t advSid, uint8_t advAddrType, const uint8_t *pAdvAddr, uint16_t skip, uint16_t syncTimeout)
void DmSyncStop(uint16_t syncId)
void DmAddDeviceToPerAdvList(uint8_t advAddrType, const uint8_t *pAdvAddr, uint8_t advSid)
void DmRemoveDeviceFromPerAdvList(uint8_t advAddrType, const uint8_t *pAdvAddr, uint8_t advSid)
void DmClearPerAdvList(void)
bool_t DmScanModeExt(void)

For more information on these function please reference the Device Manager API Guide.

6.2 2Mbps PHY

The BT5 Stack inherently supports 2Mbps mode. 2Mpbs mode can be enabled utilizing the DmSetPhy() call (See

the Device Manager API Guide for more information). See the dats sample application for an example
configuration that support 2Mbps operation.

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 13

7 SYSTEM CONFIGURATION

7.1 Stack Configuration Options
The following configurable parameters are defined in cfg_stack.h (./ble-host/sources/stack/cfg/cfg_stack.h)

7.1.1 HCI_TX_DATA_TAILROOM

For single CPU solutions using Cordio Stack IP we support a zero-copy interface which allows for optimal
performance by eliminating unnecessary data copying. Zero-copy is used when a packet sent across the HCI
interface from the Host to the Controller does not require fragmentation. In this scenario extra space must be
allocated in the buffer for Link Layer operations and is defined by this parameter. Please note that when the zero-
copy API is utilized the LL is required to free the HCI buffer.

7.1.2 DM_CONN_MAX

DM_CONN_MAX specifies the maximum number of connections that the stack can simultaneously support. This
parameter is set to 3 by default with the only limitation on DM_CONN_MAX’s configured value being the available
memory of the system.

7.1.3 DM_SYNC_MAX

DM_SYNC_MAX defines the maximum number of periodic synchronized advertisements supported by the host
stack by the scanner / observer. This parameter is specific to Bluetooth 5.0 and later versions of the specification.
The default value for this parameter is set to 1.

7.1.4 DM_NUM_ADV_SETS

DM_NUM_ADV_SETS defines the number of supported advertising sets as defined by the Bluetooth 5.0
specification. Note that this parameter must be set to 1 for legacy advertising.

7.1.5 DM_NUM_PHYS

DM_NUM_PHYS defines the number of scanner and initiator PHYs (LE 1M, LE 2M, LE Coded) as defined by the
Bluetooth 5.0 specification. Note that this parameter must be set to 1 for legacy scanner and initiator functionality
to work.

7.2 HCI Flow Control
The Cordio Stack implements a flow control mechanism to prevent overwhelming the Controller with more data
than it can handle. The flow control mechanism operates as follows:

A call to an ATT function (e.g. AttsHandleValueNtf) that results in an over-the-air packet from the application
results in copying the application data into a WSF buffer (if available) and scheduling the packet for delivery to
L2CAP. The message is then handled by the L2CAP process and passed down to the HciSendAclData() function
where it is sent out over HCI if buffers are available, after which a Confirm status is propogated back up to the
application so the application knows the packet has gone out (over HCI – not over the air).

To manage flow control for the case that the application / stack tries to overwhelm the HCI with too many packets,
a flow control mechanism is configured per connection. The pConn->flowDisabled flag manages whether or not
packet flow into HCI has been disabled.

The flow control mechanism kicks in when all of the HCI buffers are full. This occurs when the number of queued
buffers for a connection exceeds the configurable hi water mark (HCI_ACL_QUEUE_HI). When this occurs the
HCI connections (hciCoreConn_t) flowDisabled flag is set to prevent further buffering of data. Flow control is later
re-enabled after enough HCI Number of Completed Packet Events are processed by the host such that the
outgoing (queued) buffer list drops to or below the configured low water mark (HCI_ACL_QUEUE_LO). The high
and low water marks for flow control are defined in ./ble-host/sources/hci/common/hci-core.c.

The HCI flow control mechanism is wired up through L2CAP to the ATT and SMP modules to simultaneously
enable and disable flow control higher up in the stack. For the ATT server the callbacks are wired up to the
attsIndCtrlCback (note: the callbacks are not wired up for the ATT client) when flow control is re-enabled.

Confidential © Copyright ARM Limited 2016. All rights reserved. Page 14

8 PERSISTENT MEMORY

This section describes structures and information that should be saved in persistent storage.

8.1 Application Database
The application database (app_db.c) stores records for bonding with peer devices and should be stored in
persistent memory. Note that our out-of-the box implementation of the stack saves all data in non-persistent
memory, so modifications must be made based on the host CPU.

/*! Database */

static appDb_t appDb;

