
Copyright  2011-2016 ARM. All rights reserved. Page 1

Confidential

ARM® Cordio Profiles

ARM-EPM-115885 3.0

Sample App User’s Guide

Confidential

Sample App

Copyright  2011-2016 ARM. All rights reserved. Page 2

Confidential

ARM® Cordio Sample Application

User’s Guide
Copyright © 2011-2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Revision Confidentiality Change

30 September 2015 - Confidential First Wicentric release as 2012-0022

1 March 2016 A Confidential First ARM release

24 August 2016 1.0 Confidential AUSPEX # / Added new sample apps

15 December 2016 1.1 Confidential Sample App Update

11 July 2017 2.0 Confidential Added Watch

8 September 2017 3.0 Confidential Button configuration correction

Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the information contained in this

document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any

form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to

any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the

information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology

or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or

creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for

publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this

document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,

SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE

DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or

understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING

WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,

HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS

DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this

document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,

directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to

create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without

notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this

document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This

document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version

of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or

elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.

Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Sample App

Copyright  2011-2016 ARM. All rights reserved. Page 3

Confidential

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2011-2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ

LES-PRE-20348

Confidentiality Status
This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with

the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 4

Confidential

Contents

ARM® Cordio Profiles 1

1 Preface 8

1.1 About this book 8

1.1.1 Using this book 8

1.1.2 Terms and abbreviations 8

1.1.3 Conventions 9

1.1.4 Additional reading 10

1.2 Feedback 10

1.2.1 Feedback on content 10

2 Introduction 11

2.1 Overview 11

3 Sample Application Operation 13

3.1 cycling 13

3.2 datc 13

3.3 dats 14

3.4 fit 14

3.5 hidapp 15

3.6 medc 15

3.6.1 Compile Options 15

3.7 meds 17

3.7.1 Compile Options 17

3.8 tag 19

3.9 uribeacon 21

3.10 watch 21

4 Software Design 22

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 5

Confidential

4.1 Software System 22

4.2 Sample Application Design 22

5 Sample Application Code Walkthrough 23

5.1 Configurable Parameters 23

5.1.1 Slave Parameters 23

5.1.2 Security Parameters 23

5.1.3 Connection Update Parameters 24

5.1.4 HID Parameters 24

5.2 Advertising Data 26

5.3 ATT Client Discovery Data 27

5.4 ATT Client Data 29

5.5 ATT Server Data 29

5.6 Protocol Stack Callbacks 30

5.6.1 DM Callback 30

5.6.2 ATT Callback 30

5.6.3 ATT CCC Callback 30

5.7 Event Handler Action Functions 30

5.7.1 tagClose 31

5.7.2 tagSetup 31

5.8 Button Handler Callback 31

5.9 Discovery Callback 31

5.10 Event Handler Processing Function 32

5.11 Application Initialization Function 32

5.12 Application Event Handler Function 32

5.13 Application Start Function 33

5.14 Over the Air Firmware Upgrade 33

5.14.1 Compiling OTA Sample Applications on Cordio 33

5.14.2 Loading an OTA application on Cordio via Serial Port 34

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 6

Confidential

5.14.3 Wireless Upgrade of Firmware on Cordio 34

6 Cordio BT4 Host 35

6.1 Projects 35

6.2 Commands 35

6.2.1 Serial Port Configuration 35

6.2.2 Simulate Key Press Command 35

6.2.3 Security Pin Code Command 35

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 8

Confidential

1 Preface

This preface introduces the Cordio Sample App Users Guide.

1.1 About this book

This book describes the ARM Cordio Bluetooth low energy sample applications. It provides example

source code for products such as a proximity keyfob, health sensor, and watch.

1.1.1 Using this book

This book is organized into the following chapters:

• Introduction

Read this for an overview of the sample applications

• Sample Application Operation

Read this for a description of how the sample applications interact with the user.

• Software Design

Read this for a description of the architecture of the sample applications.

• Sample Application Code Walkthrough

Read this for a detailed description of how a sample application works.

1.1.2 Terms and abbreviations

For a list of ARM terms, see the ARM glossary.

Terms specific to the Cordio software are listed below:

Term Description

ACL Asynchronous Connectionless data packet

AD Advertising Data

ARQ Automatic Repeat reQuest

ATT Attribute Protocol, also attribute protocol software subsystem

ATTC Attribute Protocol Client software subsystem

ATTS Attribute Protocol Server software subsystem

CCC or CCCD Client Characteristic Configuration Descriptor

CID Connection Identifier

CSRK Connection Signature Resolving Key

DM Device Manager software subsystem

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IRK Identity Resolving Key

JIT Just In Time

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 9

Confidential

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

OOB Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem

SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.

1.1.3 Conventions

The following table describes the typographical conventions:

Typographical conventions

Style Purpose

Italic Introduces special terminology, denotes cross-references, and

citations.

bold Highlights interface elements, such as menu names. Denotes

signal names. Also used for terms in descriptive lists, where

appropriate.

MONOSPACE Denotes text that you can enter at the keyboard, such as

commands, file and program names, and source code.

MONOSPACE Denotes a permitted abbreviation for a command or option. You

can enter the underlined text instead of the full command or option

name.

monospace italic Denotes arguments to monospace text where the argument is to be

replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

<and> Encloses replaceable terms for assembler syntax where they

appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical

meanings, that are defined in the ARM® Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,

and UNPREDICTABLE.

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 10

Confidential

1.1.4 Additional reading

This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.

Other publications

This section lists relevant documents published by third parties:

• Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

• Bluetooth SIG, “Specification of the Bluetooth System”, Version 5.0, December 7, 2016.

1.2 Feedback

ARM welcomes feedback on this product and its documentation.

1.2.1 Feedback on content

If you have comments on content then send an e-mail to support-cordio-sw@arm.com. Give:

1. The title.

2. The number, ARM-EPM-115885.

3. The page numbers to which your comments apply.

4. A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the

quality of the represented document when used with any other PDF reader.

http://infocenter.arm.com/

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 11

Confidential

2 Introduction

Cordio’s Bluetooth low energy sample applications provide example source code for products such as a

proximity keyfob, health sensor, and uribeacon.

2.1 Overview

Cordio’s sample applications are designed with a product-oriented focus, with each application

supporting one or more Bluetooth LE profile. The table below summarizes the different sample

applications with their supported profiles and device roles.

Table 1: Sample applications

Application
Name

Description Supported Profiles Device Role

cycling Cycling sensor Cycling Power Profile

Cycling Speed and Cadence

Profile

Battery Service

Slave

datc Proprietary data client Proprietary Profile Master

dats Proprietary data server Proprietary Profile Slave

fit Fitness sensor Heart Rate Profile

Runners Speed and Cadence

Profile

Battery Service

Slave

hidapp HID controls HID Service

Battery Service

Slave

medc Health data collector Blood Pressure Profile

Glucose Profile

Heart Rate Profile

Weight Scale Profile

Health Thermometer Profile

Pulse Oximeter Profile

User Data Service Collector

Master

meds Health sensor Blood Pressure Profile

Weight Scale Profile

Health Thermometer Profile

Pulse Oximeter Profile

Glucose Profile

Slave

tag Proximity tag Find Me Profile

Proximity Profile

Slave

uribeacon Google URIbeacon Proprietary Profile Slave

watch Smart Watch Alert Notification Profile Master, Slave

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 12

Confidential

Heart Rate Profile

Phone Alert Status Profile

Time Profile

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 13

Confidential

3 Sample Application Operation

The sample applications are designed to interact with the user via buttons and to provide user feedback

via LEDs, sounds, or other mechanisms depending on the capabilities of the target hardware platform.

The applications use the following button press durations:

Table 2: Button durations

Press Duration Description

Short Press Button pressed for less than 1.6 seconds.

Medium Press Button pressed for greater than 1.6 seconds and less than 3.2

seconds.

Long Press Button pressed for greater than 3.2 seconds and less than 4.8

seconds.

Extra Long Press Button pressed for greater than 4.8 seconds.

3.1 cycling

The cycling application implements a cycling power sensor and cycling speed and cadence sensor.

When the application starts it will begin advertising. The application advertises continuously when not

connected.

The cycling application does not use any button presses. When a peer device connects and enables

sensor measurements the application will start sending sensor data.

3.2 datc

The datc application implements the master role of a proprietary data transfer application. It has an

auto connect feature, where it scans for and then automatically connects to a matching proprietary data

transfer slave application. Once connected, the application can send and receive simple data messages.

The datc application is capable of connecting to multiple slave devices.

The datc application can be compiled with WDXC_INCLUDED and stream data to an ARM

proprietary Wireless Data Exchange Server (WDXS). To begin streaming, first use Button 2 Long to

discover files on the peer, then use button 2 Med to start streaming.

The datc application is capable of connecting to multiple slaves. When connected to more than one

slave, Button 2 Med can be used to toggle the ConnId used in button actions.

Table 3: datc button operation

Button Press Description

When disconnected

Button 1 Short Initiate auto connect, or cancel auto connect if already initiated.

Button 1 Med Change the ConnId used for button actions

Button 1 Long Clear bonded device information.

Button 1 Extra Long Add RPAO characteristic to GAP service (for DM Privacy Enabled)

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 14

Confidential

Button 2 Extra Long Enable device privacy (generate local RPA’s every 15 minutes)

When connected

Button 1 Short Send data packet.

Button 1 Med Change the ConnId used for button actions

Button 1 Long Disconnect.

Button 2 Short Toggle 2 Mbit operation (BT 5.x only)

Button 2 Med Start/Stop streaming data when WDXC_INCLUDED=TRUE

Button 2 Long Discover files on peer when WDXC_INCLUDED=TRUE

3.3 dats

The dats application implements the slave role of a proprietary data transfer application. When the

application starts it will begin advertising. The application advertises continuously when not

connected.

When the application receives a data message from the peer device it will automatically send a fixed

data message back.

The dats application can be built to utilize the OTA (Over the Air Firmware Updates).

Table 4: fit button operation

Button Press Description

When connected

Button 1 Short Change stream waveform (For WDXS – OTA support)

Button 2 Short Toggle 2 Mbit operation (BT 5.x only)

3.4 fit

The fit application implements a heart rate profile sensor and runners speed and cadence sensor.

When the application starts it will advertise for 60 seconds. A button press is used to restart advertising

if it has stopped.

Table 5: fit button operation

Button Press Description

When disconnected

Button 1 Short Restart advertising.

Button 1 Medium Enter discoverable and bondable mode and start advertising.

Button 1 Long Clear bonded device information and then start advertising.

When connected

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 15

Confidential

Button 1 Short Increment simulated heart rate.

Button 1 Long Disconnect.

Button 2 Short Decrement simulated heart rate.

3.5 hidapp

The hidapp application implements several profiles applicable to a HID Consumer Device including

keyboard, mouse, and remote control functionality.

When the application starts, it begins advertising. The application advertises for 60 seconds when not

connected.

Table 6: Hidapp button operation

Button Press Description

 When connected

Button 1 Down Change (scroll) test command.

Button 2 Down Send test command.

All other button events Transmit No Button event.

 When disconnected

Button 1 Short Start or restart advertising

Button 1 Medium Enter discoverable and bondable mode

Button 1 Long Clear bonded device info and restart advertising

3.6 medc

The medc application implements the collector role of several different health profiles.

The selected profile is configured at either run time or compile time.

Note: Although the application supports multiple profiles it does not support simultaneous operation of

multiple profiles.

Note: The medc application only includes the user data service collector (UDSC) when configured to

run as a weight scale (WSP).

The medc application has an auto connect feature. It scans for and then automatically connects to a

matching profile.

3.6.1 Compile Options

The following compile options can be configured in medc_main.c.

Table 7: medc_main.c compile options

Name Description

MEDC_HRP_INCLUDED TRUE if heart rate profile included.

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 16

Confidential

MEDC_BLP_INCLUDED TRUE if blood pressure profile included.

MEDC_GLP_INCLUDED TRUE if glucose profile included.

MEDC_WSP_INCLUDED TRUE if weight scale profile included.

MEDC_HTP_INCLUDED TRUE if health thermometer profile included.

MEDC_PLX_INCLUDED TRUE if pulse oximeter profile included.

MEDC_PROFILE Default profile to use.

The values for macro MEDC_PROFILE are as follows:

Table 8: MEDC_PROFILE

Name Description

MEDC_ID_HRP Heart rate profile.

MEDC_ID_BLP Blood pressure profile.

MEDC_ID_GLP Glucose profile.

MEDC_ID_WSP Weight scale profile and User Data Service Collector

MEDC_ID_HTP Health thermometer profile.

MEDC_ID_PLX Pulse oximeter profile.

Table 9: All profiles default button operation

Button Press Description

When disconnected

Button 1 Short Initiate auto connect, or cancel auto connect if already initiated.

Button 1 Long Clear bonded device information.

When connected

Button 1 Long Disconnect.

Table 10: Glucose Profile button operation

Button Press Description

When connected

Button 1 Short Report all records.

Button 1 Medium Report records greater than sequence number.

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 17

Confidential

Button 2 Short Report number of records.

Button 2 Medium Report number of records greater than sequence number.

Button 2 Long Abort.

Button 2 Extra Long Delete all records.

Table 11: Pulse Oximeter Profile button operation

Button Press Description

When connected

Button 1 Medium Close connection

Button 2 Short Delete all records.

Button 2 Medium Report stored records

Button 2 Long Report number of stored records

Button 2 Extra Long Abort operations

3.7 meds

The meds application implements the sensor role of several different health profiles. The selected

profile is configured at run time or compile time.

Note: Although the application supports multiple profiles it does not support simultaneous operation of

multiple profiles.

When the application starts it will advertise for 60 seconds. A button press is used to restart advertising

if it has stopped.

The application uses simulated sensor values for its sensor data.

3.7.1 Compile Options

The following compile options can be configured in meds_main.c.

Table 12: meds_main.c compile options

Name Description

MEDS_BLP_INCLUDED TRUE if blood pressure profile included.

MEDS_WSP_INCLUDED TRUE if weight scale profile included.

MEDS_HTP_INCLUDED TRUE if health thermometer profile included.

MEDS_PLX_INCLUDED TRUE if pulse oximeter profile included.

MEDS_GLP_INCLUDED TRUE if glucose profile included

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 18

Confidential

MEDS_PROFILE Default profile to use.

The values for macro MEDS_PROFILE are as follows:

Table 13: MEDS_PROFILE

Name Description

MEDS_ID_BLP Blood pressure profile.

MEDS_ID_WSP Weight scale profile.

MEDS_ID_HTP Health thermometer profile.

MEDS_ID_PLX Pulse oximeter profile.

MEDS_ID_GLP Glucose profile

The values for the profiles are listed in the tables below:

Table 14: All profiles default button operation

Button Press Description

 When disconnected

Button 1 Short Restart advertising.

Button 1 Medium Enter discoverable and bondable mode and start advertising.

Button 1 Long Clear bonded device information and then start advertising.

 When connected

Button 1 Long Disconnect.

Table 15: Blood Pressure Profile button operation

Button Press Description

 When connected

Button 1 Short Press to start a measurement. If already started, press again to complete

measurement and send final measurement value.

Table 16: Weight scale profile button operation

Button Press Description

When connected

Button 1 Short Send final measurement value.

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 19

Confidential

Table 17: Health Thermometer Profile button operation

Button Press Description

When connected

Button 1 Short Press to start a measurement. If already started, press again to complete

measurement and send final measurement value.

Button 2 Short Set units to Fahrenheit.

Button 2 Medium Set units to Celsius.

Button 2 Long Toggle advertising type (non-connectable to connectable, undirected)

Table 18: Pulse Oximeter Profile button operation

Button Press Description

When connected

Button 1 Short Press to start a measurement. If already started, press again to complete

measurement and send final measurement value.

Button 2 Short Send a measurement.

Button 2 Medium Delete all records

Table 19: Glucose Profile button operation

Button Press Description

When connected

Button 2 Long Generate a new record.

 When disconnected

Button 2 Long Generate a new record.

Button 2 Extra Long Delete all records

3.8 tag

The tag application implements the proximity and find me profiles.

When the application starts, it begins advertising. The application advertises continuously when not

connected.

The tag application can be built to utilize the OTA (Over the Air Firmware Updates).

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 20

Confidential

Table 20: Tag button operation

Button Press Description

When disconnected

Button 1 Short Restart advertising.

Button 1 Medium Enter discoverable and bondable mode and start advertising.

Button 1 Long Clear bonded device information and then start advertising.

Button 1 Extra Long Add RPAO characteristic to GAP service

Button 2 Short Stop advertising

Button 2 Medium Clear white list

Button 2 Long Start directed advertising using peer address

Button 2 Extra Long Enabled device privacy (generate local RPA’s every 15 minutes)

When connected

Button 1 Short Send immediate alert, high.

Button 1 Medium Stop immediate alert, none.

Button 1 Long Disconnect.

Button 2 Short Start RSSI read, start timer; if read RSSI in progress, stop timer

Button 2 Medium Add peer to white list (if using public address)

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 21

Confidential

3.9 uribeacon

The uribeacon application implements Google’s proprietary URIbeacon profile.

When the application starts, it begins advertising for 30 seconds. Advertising can be restarted with a

button press.

Table 21: uribeacon button operation

Button Press Description

When not connected

Button 1 Short Restart advertising.

3.10 watch

The watch application implements a sample smart watch using the Time, Alert, Phone Alert Status and

Heart Rate Profiles. The watch application can operate as both a master and a slave simultaneously.

When the application starts, the watch application begins advertising. Advertising can be restarted with

a button press.

The watch application can scan and connect to sensor devices supporting the heart rate profile such as

the fit sample application. The watch application has an auto connect feature. It scans for and then

automatically connects to a matching profile.

Table 22: watch button operation

Button Press Description

When not connected as a Master

Button 1 Short Start scan and auto connect, or stop if scan already in progress.

Button 1 Long Clear bonded device information.

When connected as a Master

Button 1 Long Disconnect.

When not connected as a Slave

Button 2 Short Restart advertising.

Button 2 Medium Enter discoverable and bondable mode and start advertising.

Button 2 Long Clear bonded device information and then start advertising.

When not connected as a Slave

Button 2 Short Mute ringer once.

Button 2 Med Toggle between silencing and enabling ringer.

Button 2 Long Disconnect.

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 22

Confidential

4 Software Design

This section describes the architecture of the sample applications.

4.1 Software System

The sample applications are part of the Cordio Profiles software system, as shown in Figure 1.

The sample applications interface to the Profiles and Services, which provide interoperable components

designed to Bluetooth specification requirements.

The sample applications also interface to the App Framework, which provides connection and device

management services, user interface services, a device database, and a hardware sensor interface.

Figure 1. The Cordio Profiles software system

For a complete description see the App Framework API Reference Manual and Profiles and Services

API Reference Manual.

4.2 Sample Application Design

All sample applications follow the same basic design model, and consist of the following:

• Configurable parameters: Data structures that control the behavior of advertising, security,

and connections. More detail on configurable parameters can be found in the App Framework

API.

• Attribute protocol (ATT) data: Data structures and constants that configure service discovery

and manage client characteristic configuration descriptor (CCCD) data for the ATT client and

server.

• Protocol stack and App Framework callbacks: These functions interface the Cordio protocol

stack and App Framework to the sample application event handler.

• Button press handler: This function controls the application behavior on button press events.

For example, start advertising on a short button press.

• Event handler and event processing functions: These functions handle events from the

protocol stack and perform actions specific to the sample application. For example, generate a

UI alert when the connection is closed.

Sample Applications

Profiles and Services

App Framework

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 23

Confidential

5 Sample Application Code Walkthrough

This code walkthrough provides a detailed description of how a sample application works. The

example code in this walkthrough is taken from the tag sample application in file tag_main.c.

5.1 Configurable Parameters

This section of the code contains configurable parameters for slave, security, and connection update.

5.1.1 Slave Parameters

The slave parameters configuration structure appAdvCfg_t configures the interval and duration of

advertising. The structure contains three interval-duration pairs.

A code example is shown below:

/*! configurable parameters for slave */

static const appAdvCfg_t tagSlaveCfg =

{

 {15000, 45000, 0}, /*! Advertising durations in ms */

 { 56, 640, 1824} /*! Advertising intervals in 0.625 ms units */

};

Note: The advertising interval is in 0.625ms units. For example:

56 * 0.625ms = 35ms

If the advertising duration is zero, then advertising will not time out and will continue until a

connection is established or advertising is stopped by the application.

This example creates the following advertising behavior:

• Advertise with a 35ms interval for 15 seconds.

• Advertise with a 400ms interval for 45 seconds.

• Advertise continuously with a 1140ms interval.

5.1.2 Security Parameters

The security parameters structure appSecCfg_t configures the security options for the application. A

code example is shown below:

/*! configurable parameters for security */

static const appSecCfg_t tagSecCfg =

{

 DM_AUTH_BOND_FLAG, /*! Authentication and bonding flags */

 0, /*! Initiator key distribution flags */

 DM_KEY_DIST_LTK, /*! Responder key distribution flags */

 FALSE, /*! TRUE if Out-of-band pairing data is present */

 TRUE /*! TRUE to initiate security upon connection */

};

This example creates the following security behavior:

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 24

Confidential

1. Request bonding and use just works pairing without a PIN.

2. Only distribute the minimum required keys.

3. Out-of-band data (used instead of a PIN for pairing) is not present.

4. Initiate a request for security upon connection.

5.1.3 Connection Update Parameters

The structure appUpdateCfg_t configures the connection update parameters. These parameters are

used after a connection is established to reconfigure a connection for low power and/or low latency.

The appUpdateCfg_t structure is currently only used by slave devices.

A code example is shown below:

/*! configurable parameters for connection parameter update */

static const appUpdateCfg_t tagUpdateCfg =

{

 6000, /*! Connection idle period in ms before attempting

 connection parameter update; set to zero to disable */

 640, /*! Minimum connection interval in 1.25ms units */

 800, /*! Maximum connection interval in 1.25ms units */

 0, /*! Connection latency */

 600, /*! Supervision timeout in 10ms units */

 5 /*! Number of update attempts before giving up */

};

Note: The connection interval is in 1.25ms units. For example, 640 * 1.25 = 800ms.

This example creates the following behavior:

1. Request a connection parameter update after the connection has been idle for at least 6 seconds.

The connection is considered idle when there is no pending security procedure or ATT

discovery procedure.

2. Request a connection interval between 800 and 1000ms.

3. Request a connection latency of zero, meaning that the slave and master have equal connection

intervals.

4. Set the supervision timeout to 6 seconds. If the connection is lost for 6 seconds the devices will

disconnect.

5. Attempt a connection parameter update 5 times. The master device may reject a connection

parameter update if it is busy. If this occurs the connection parameter update will be attempted

again.

5.1.4 HID Parameters

Applications using the HID service (for example, keyboard, mouse, and remote) must register a

hidConfig_t with the HID profile.

A code example is shown below:

/*! HID Profile Configuration */

static const hidConfig_t mouseHidConfig =

{

 HID_DEVICE_TYPE_MOUSE, /* Type of HID device */

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 25

Confidential

 (uint8_t*) mouseReportMap, /* Report Map */

 sizeof(mouseReportMap), /* Size of report map in bytes */

 (hidReportIdMap_t*) mouseReportIdSet, /* Report ID to Attribute Handle map */

 sizeof(mouseReportIdSet)/sizeof(hidReportIdMap_t), /* ID to Handle map size (bytes) */

 NULL, /* Output Report Callback */

 NULL, /* Feature Report Callback */

 mouseInfoCback /* Info Callback */

};

HidInit(&mouseHidConfig);

This example creates the following behavior:

1. A HID Mouse device, defined by the HID_DEVICE_TYPE_MOUSE. HID mice support Boot

Mouse HID Reports.

Alternative device types are HID_DEVICE_TYPE_KEYBOARD which support the Boot Keyboard

Reports, and HID_DEVICE_TYPE_GENERIC which do not support the HID Boot Protocol Mode or

HID Boot Reports.

2. Registers a HID Report Map defined by the mouseReportMap structure shown below:

static const uint8_t mouseReportMap[] =

{

 0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */

 0x09, 0x02, /* USAGE (Mouse) */

 0xa1, 0x01, /* COLLECTION (Application) */

 0x09, 0x01, /* USAGE (Pointer) */

 0xa1, 0x00, /* COLLECTION (Physical) */

 0x05, 0x09, /* USAGE_PAGE (Button) */

 0x19, 0x01, /* USAGE_MINIMUM (Button 1) */

 0x29, 0x03, /* USAGE_MAXIMUM (Button 3) */

 0x15, 0x00, /* LOGICAL_MINIMUM (0) */

 0x25, 0x01, /* LOGICAL_MAXIMUM (1) */

 0x95, 0x03, /* REPORT_COUNT (3) */

 0x75, 0x01, /* REPORT_SIZE (1) */

 0x81, 0x02, /* INPUT (Data,Var,Abs) */

 0x95, 0x01, /* REPORT_COUNT (1) */

 0x75, 0x05, /* REPORT_SIZE (5) */

 0x81, 0x03, /* INPUT (Cnst,Var,Abs) */

 0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */

 0x09, 0x30, /* USAGE (X) */

 0x09, 0x31, /* USAGE (Y) */

 0x15, 0x81, /* LOGICAL_MINIMUM (-127) */

 0x25, 0x7f, /* LOGICAL_MAXIMUM (127) */

 0x75, 0x08, /* REPORT_SIZE (8) */

 0x95, 0x02, /* REPORT_COUNT (2) */

 0x81, 0x06, /* INPUT (Data,Var,Rel) */

 0xc0,

 0xc0

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 26

Confidential

};

The HID Report Map is a HID Report Descriptor for the HID device. A detailed description of

HID Report Descriptors can be found in the USB HID spec.

A map between the HID Report ID and the ATT attribute handle as specified by the code below:

static const hidReportIdMap_t mouseReportIdSet[] =

{

 /* type ID handle */

 {HID_REPORT_TYPE_INPUT, 0, HIDM_INPUT_REPORT_HDL}, /* Input Report */

 {HID_REPORT_TYPE_INPUT, HID_BOOT_ID, HIDM_MOUSE_BOOT_IN_HDL}, /* Boot Input Report */

};

3. An information callback that receives notification of HID Control Point and HID Protocol

Mode messages via the mouseInfoCback() function.

4. An application that does not receive HID feature or output reports. Applications wishing to

receive HID output or feature reports must provide callback functions to the outputCback or

featureCback parameters of the hidConfig_t structure.

5.2 Advertising Data

The advertising data and scan response data is configured via simple byte arrays. There can be separate

sets of advertising and scan response data for connectable and discoverable mode (as we’ll see later on

in Section 5.7.2).

The contents of advertising and scan response data follow a simple length-type-value format as defined

by the Bluetooth specification. The length byte contains the length of the type byte and value bytes that

follow. The type byte contains the advertising data type, or AD type, specifying a particular type of

data. The value bytes, if present, are set according to the AD type.

Example advertising and scan response data is shown below:

/*! advertising data, discoverable mode */

static const uint8_t tagAdvDataDisc[] =

{

 /*! flags */

 2, /*! length */

 DM_ADV_TYPE_FLAGS, /*! AD type */

 DM_FLAG_LE_LIMITED_DISC | /*! flags */

 DM_FLAG_LE_BREDR_NOT_SUP,

 /*! tx power */

 2, /*! length */

 DM_ADV_TYPE_TX_POWER, /*! AD type */

 0, /*! tx power */

 /*! device name */

 11, /*! length */

 DM_ADV_TYPE_LOCAL_NAME, /*! AD type */

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 27

Confidential

 'c',

 'o',

 'r',

 'd',

 'i',

 'o',

 ' ',

 'a',

 'p',

 'p'

};

/*! scan data, discoverable mode */

static const uint8_t tagScanDataDisc[] =

{

 /*! service UUID list */

 7, /*! length */

 DM_ADV_TYPE_16_UUID, /*! AD type */

 UINT16_TO_BYTES(ATT_UUID_LINK_LOSS_SERVICE),

 UINT16_TO_BYTES(ATT_UUID_IMMEDIATE_ALERT_SERVICE),

 UINT16_TO_BYTES(ATT_UUID_TX_POWER_SERVICE)

};

The advertising data consists of three AD type fields:

1. Flags: The flags are set to limited discoverable mode.

2. TX power: The TX power is set to 0dBm.

3. Device name: The device name is set to cordio app.

The scan response data is set to the service UUID list. This contains a list of services supported by the

device. The list in this example contains the Link Loss Service, Immediate Alert Service, and TX

Power Service.

More information on AD types is in the Bluetooth 4.0 specification Volume 3, Part C, Chapter 11.

5.3 ATT Client Discovery Data

The ATT client discovery data is used for service discovery and to manage the client handle list

containing the handles of discovered characteristics and attributes.

The handle list is an integer array defined by the sample application. Handles are set in the list by App

Framework discovery functions used to find the characteristics and attributes of desired services on a

peer device. For bonded peer devices, the handle list is stored in the device database so it can be

restored on subsequent connections without performing discovery again.

In the following example, the ATT client discovery data is set up to discover the GATT Service and

Immediate Alert Service (IAS).

/*! Discovery states: enumeration of services to be discovered */

enum

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 28

Confidential

{

 TAG_DISC_GATT_SVC, /* GATT service */

 TAG_DISC_IAS_SVC, /* Immediate Alert service */

 TAG_DISC_SVC_MAX /* Discovery complete */

};

/*! the Client handle list, tagCb.hdlList[], is set as follows:

 *

 * ------------------------------- <- TAG_DISC_GATT_START

 * | GATT svc changed handle |

 * -------------------------------

 * | GATT svc changed ccc handle |

 * ------------------------------- <- TAG_DISC_IAS_START

 * | IAS alert level handle |

 * -------------------------------

 */

/*! Start of each service's handles in the handle list */

#define TAG_DISC_GATT_START 0

#define TAG_DISC_IAS_START (TAG_DISC_GATT_START + GATT_HDL_LIST_LEN)

#define TAG_DISC_HDL_LIST_LEN (TAG_DISC_IAS_START + FMPL_IAS_HDL_LIST_LEN)

/*! Pointers into handle list for each service's handles */

static uint16_t *pTagGattHdlList = &tagCb.hdlList[TAG_DISC_GATT_START];

static uint16_t *pTagIasHdlList = &tagCb.hdlList[TAG_DISC_IAS_START];

The discovery state enumeration is a list of the services to be discovered. These values are used in the

App Framework discovery callback (see Section 5.9).

Then some constants and pointers are defined for accessing the handle list, as illustrated in the figure

below.

Figure 2. Example ATT client handle list and associated data.

In this example the handle list stores three handles: Two GATT handles and one IAS handle.

Constants TAG_DISC_GATT_START and TAG_DISC_IAS_START are set to the start index of the handles

for their respective services in the handle list. The pointers pTagGattHdlList and pTagIasHdlList

point to the start of the handles for their respective services in the handle list. These pointers are used

 TAG_DISC_GATT_START

= 0

1

TAG_DISC_IAS_START = 2

hdlList[]

pTagGattHdlList

pTagIasHdlList

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 29

Confidential

by the profile service discovery functions (for example GattDiscover() and FmplIasDiscover()) to

access the handle list.

5.4 ATT Client Data

When service and characteristic discovery is complete, a profile typically requires that certain

characteristics are read or written to configure the profile and the services it uses. For example, client

characteristic configuration descriptors (CCCDs) are typically written to enable indications or

notifications for their respective characteristics.

The ATT client data consists of constants and data structures used to configure a list of discovered

characteristics. The data is used with the AppDiscConfigure() function of the App Framework API.

The data structure of type attcDiscCfg_t contains of a list of characteristics to read or write. Each

entry in the list contains a value (if it is to be written), the value length, and the handle index of the

discovered attribute or characteristic. An example is shown below:

/* Default value for GATT ccc descriptor */

static const uint8_t tagGattScCccVal[] =

 {UINT16_TO_BYTES(ATT_CLIENT_CFG_INDICATE)};

/* List of characteristics to configure */

static const attcDiscCfg_t tagDiscCfgList[] =

{

 /* Write: GATT service changed ccc descriptor */

 {tagGattScCccVal, sizeof(tagGattScCccVal),

 (GATT_SC_CCC_HDL_IDX + TAG_DISC_GATT_START)}

};

/* Characteristic configuration list length */

#define TAG_DISC_CFG_LIST_LEN (sizeof(tagDiscCfgList) / sizeof(attcDiscCfg_t))

In this example, the characteristic list has a single entry that contains data used to write the CCCD of

the GATT service changed characteristic. The value to be written will enable indications.

Note: The value is formatted as a little-endian byte array.

The handle index is set to (GATT_SC_CCC_HDL_IDX + TAG_DISC_GATT_START). The value

GATT_SC_CCC_HDL_IDX is the handle index of the CCCD discovered by the GATT profile (see

gatt_api.h). The value TAG_DISC_GATT_START is the start index of the GATT portion of the

applications handle list, as described in Section 5.3.

5.5 ATT Server Data

The ATT server data contains constants and data structures defining the client characteristic

configuration descriptors (CCCDs) used in the services supported by the device in its own server.

The data is used by the ATT server CCCD management service. The data consists of an enumeration

of each CCCD in the ATT server and a table of settings for each CCCD. An example is shown below:

/*! enumeration of client characteristic configuration descriptors used in local ATT

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 30

Confidential

server */

enum

{

 TAG_GATT_SC_CCC_IDX, /*! GATT service, service changed characteristic */

 TAG_NUM_CCC_IDX /*! Number of ccc's */

};

/*! client characteristic configuration descriptors settings, indexed by ccc

enumeration */

static const attsCccSet_t tagCccSet[TAG_NUM_CCC_IDX] =

{

 /* cccd handle value range security level */

 {GATT_SC_CH_CCC_HDL, ATT_CLIENT_CFG_INDICATE, DM_SEC_LEVEL_ENC}

};

In this example the ATT server database contains a single CCCD for the GATT service changed

characteristic. The table of CCCD settings has a single entry, containing the handle of the CCCD, the

value range, and the security level required for an indication or notification to be sent for the

characteristic value associated with the CCCD. In this example the CCCD supports indications, and

encryption is required before an indication can be sent.

5.6 Protocol Stack Callbacks

The protocol stack callbacks interface the sample application to the Cordio protocol stack.

5.6.1 DM Callback

The DM callback function is executed when the stack has a device management event to send to the

application. The function simply copies the callback event parameters to a message and sends the

message to the sample application event handler.

5.6.2 ATT Callback

The ATT callback function is executed when the ATT protocol client or server has an event to send to

the application. The function simply copies the callback event parameters to a message and sends the

message to the sample application event handler.

5.6.3 ATT CCC Callback

The ATT CCC callback function is executed when a peer device writes a new value to a client

characteristic configuration descriptor in the ATT server. It is also executed on connection

establishment if the CCCD is initialized with a stored value from a previous connection.

The function first checks if this new CCCD value should be stored in the device database. If so, the

value is stored. Then it sends a message to the sample application event handler with the CCCD value.

5.7 Event Handler Action Functions

A sample application defines event handler actions functions when a particular event, such as

connection open or close, requires specific actions in the application. The following functions are

examples from the tag sample application.

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 31

Confidential

5.7.1 tagClose

This function performs an alert when the connection is closed.

5.7.2 tagSetup

This function is executed when the application is started after the stack is reset.

It sets up the advertising and scan response data, and then starts advertising:

 /* set advertising and scan response data for discoverable mode */

 AppAdvSetData(APP_ADV_DATA_DISCOVERABLE, sizeof(tagAdvDataDisc),

 (uint8_t *) tagAdvDataDisc);

 AppAdvSetData(APP_SCAN_DATA_DISCOVERABLE, sizeof(tagScanDataDisc),

 (uint8_t *) tagScanDataDisc);

 /* set advertising and scan response data for connectable mode */

 AppAdvSetData(APP_ADV_DATA_CONNECTABLE, 0, NULL);

 AppAdvSetData(APP_SCAN_DATA_CONNECTABLE, 0, NULL);

 /* start advertising; automatically set connectable/discoverable

 mode and bondable mode */

 AppAdvStart(APP_MODE_AUTO_INIT);

Note: The advertising data is set to the constants described earlier in Section 5.1.4. Also note that the

advertising data is set differently for discoverable mode and connectable mode, and that the advertising

data is set to empty in connectable mode.

The device starts advertising by calling function AppAdvStart(). By using auto init mode, the

connectable/discoverable and bondable mode of the device is set automatically based on whether the

device has already bonded. If it has not bonded the device is set to discoverable and bondable mode. If

it has bonded the device is set to connectable and non-bondable mode.

5.8 Button Handler Callback

The button handler callback function is part of the App Framework’s user interface service. It is

executed by the App Framework when a button press occurs. The button press value identifies the

pressed button and the duration of the button press (short, medium, or long).

This function performs an action on a button press event specific to the sample application. The

application will typically perform different actions when connected vs. not connected. For example in

the tag application, an immediate alert is sent when a short button press occurs while connected.

5.9 Discovery Callback

This is the callback function for the App Framework discovery API. The App Framework provides a

set of discovery APIs that simplify service and characteristic discovery as well as service configuration.

The App Framework executes the callback at appropriate times to trigger the application to perform a

discovery-related action. The status parameter to the function indicates the action to perform, or the

status result of a completed action.

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 32

Confidential

The status values and the associated action typically performed by the callback function are as follows:

1. APP_DISC_INIT: This status value is used when the connection is opened. The function must

call AppDiscSetHdlList() and pass in a memory buffer for the App Framework to store the

handle list.

2. APP_DISC_SEC_REQUIRED: This status value is used when security is required to complete

configuration. This function must call AppSlaveSecurityReq() and pass in the connection id.

3. APP_DISC_START: This status value is used when discovery is started. The function should

initiate service discovery for the first service to be discovered, for example call

GattDiscover().

4. APP_DISC_CMPL and APP_DISC_FAILED: These status values are used when the previously-

initiated discovery procedure is complete. If there are more services to discover initiate

discovery for the next service. Otherwise, call AppDiscComplete(APP_DISC_CMPL) to notify

the App Framework that all discovery procedures are complete. If there is a configuration

procedure to perform initiate the configuration procedure by calling AppDiscConfigure()

using the ATT client data as described in Section 5.4.

5. APP_DISC_CFG_START: This status value is used to start a configuration procedure. This status

value is used when all discovery procedures are complete but configuration is not complete. If

there is a configuration procedure to perform initiate the procedure. Otherwise, call

AppDiscComplete(APP_DISC_CFG_CMPL) to notify the App Framework that all discovery

procedures are complete.

6. APP_DISC_CFG_CONN_START: This status value is used to start a connection setup configuration

procedure. This can be used when an application needs to read or write certain characteristics

of the peer device every time a connection is established. If applicable, call

AppDiscConfigure() to perform the configuration procedure.

7. APP_DISC_CFG_CMPL: This function is called when a configuration procedure is complete. Call

AppDiscComplete(APP_DISC_CFG_CMPL) to notify the App Framework that all discovery

procedures are complete.

5.10 Event Handler Processing Function

This function decodes received DM or ATT events and then executes an action function to perform an

application-specific procedure. The sample application code also demonstrates how DM events can be

mapped to UI events that are then passed to AppUiAction() to perform a platform-specific UI action,

for example blink an LED when a connection is established.

5.11 Application Initialization Function

The application initialization function is executed on system startup when the WSF event handlers for

the system are initialized. This function initializes App Framework configuration pointers and

initializes any used App Framework components that require initialization.

5.12 Application Event Handler Function

This is the application’s WSF event handler. It is executed by the WSF OS. Received messages are

passed to the appropriate App Framework components and then are passed to the application’s event

handler processing function.

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 33

Confidential

5.13 Application Start Function

This is the function that ties everything together for the application:

• This function is executed on system startup after WSF event handlers have been initialized.

• The function registers the application’s protocol stack callback functions and App Framework

callback functions.

• It then initializes the services used in the local ATT server database.

• Finally, function DmDevReset() is called to reset the stack and Bluetooth LE controller and then

trigger the start of the application.

5.14 Over the Air Firmware Upgrade

The dats and tag sample applications are preconfigured to support Over the Air Upgrades of application

firmware, also known as OTA. To enable the OTA, the applications must be built using the

WDXS_INCLUDED flag. The WDXS_INCLUDED compile time flag enabled the WDXS service and

profile in the dats and tag applications.

5.14.1 Compiling OTA Sample Applications on Cordio

This section covers building the dats sample application with support for OTA.

Note: Currently only GCC projects supports OTA.

First, build the OTA Bootloader. To build the bootloader from a linux or mingwin command prompt,

first change directory into the ota-boot/gcc folder:

 > cd /cordio-bt4-host/projects/ota-boot/gcc

Then run the following make command:

 > make

Next, build the dats sample application. Note: A similar make operation will build the tag application

with support for OTA.

To build the dats gcc project from a linux or mingwin command prompt, first change directory into the

dats gcc folder:

 > cd /cordio-bt4-host/projects/dats/gcc

Then run the following make command:

 > make WDXS_INCLUDED=1 OTA_VER=”1.0”

Where the OTA_VER is set to any string that represents the version of the application.

The make will generate the following binaries in the dats/gcc/bin-cortex-m0 folder:

• dats-obj.ota.spf – Firmware that can be loaded via serial port

• dats-obj.ota.bin – Firmware that can be loaded via OTA upgrade

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 34

Confidential

5.14.2 Loading an OTA application on Cordio via Serial Port

The first time an application supporting OTA is loaded on the cordio, it must be loaded via a serial port.

To load the formware via serial port, first insert the boot jumper (J18) on the cordio board. Then use

the fwuploader application to upload the firmware as follows:

 > fwupdater.exe /bin-cortex-m0/dats-obj.ota.spf COM<x>

Where the <x> in COM<x> is the number of the com port for the cordio board.

The fwupdater.exe application will display the number of bytes written to the flash on the cordio board

and exit when the firmware upload is complete.

Remove the boot jumper (J18) and reboot the cordio board.

5.14.3 Wireless Upgrade of Firmware on Cordio

The ARM BLE iOS application is required to perform wireless OTA firmware upgrades. This

application can be found in the Apple App Store.

The ARM BLE iOS app requires a Google Drive account to perform wireless upgrades of firmware. To

register a Google Account with the ARM BLE App, tap the settings button at the bottom of the ARM

BLE App. Then, tap the Google Account button and follow the instruction to register your Google

Account.

After registering a Google account with the ARM BLE App, a directory will be created in the Google

Account’s Google Drive (drive.google.com). This folder is called ARM BLE/ota/WDXS APP.

Use the following steps to perform an OTA firmware upgrade:

• Tap the Settings button at the bottom of the page.

o Ensure the automatic OTA updates setting on the ARM BLE app settings page is

enabled.

• Tap the Devices button at the bottom of the ARM BLE App to view nearby devices.

• Connect the ARM BLE App to the cordio device by taping the cordio device in the list of

nearby devices.

• Copy the new OTA binary (dats-obj.ota.bin) to the ARM BLE/ota/WDXS APP Google Drive

folder.

The ARM BLE App will recognize the new firmware in the Google Drive folder and begin pushing the

OTA binary to the cordio device. When the upload is complete, the cordio will reboot and run the new

application.

Sample Application

Copyright  2011-2016 ARM. All rights reserved. Page 35

Confidential

6 Cordio BT4 Host

As of the r2p0-00bet release, sample applications are built for the Cordio BT4 evaluation boards.

6.1 Projects

The sample application projects can be found in

 /cordio-bt4-host/projects/

Each sample application includes a keil and gcc (arm-gcc) project configured to build the SPF for drag

and drop programming, which gets loaded onto the evaluation board (BT4-GEN2-EVAL-01). For

more information on the Evaluation Boards see the Cordio BT4 Customer Evaluation and

Demonstration Kit User’s Guide.

6.2 Commands

Due to limitations on the evaluation board button presses and other commands are simulated through

the serial terminal. To execute the following commands connect to the evaluation board via Tera Term

or another terminal program and execute the commands listed in this section.

6.2.1 Serial Port Configuration

Parity: None

Data Bits: 8

Stop Bits: 1

HW Flow Control: None

BAUD: 115200

6.2.2 Simulate Key Press Command

Usage: btn <ID> <code>

ID 1, 2

code d (down), s (short), m (medium), l (long), x (extra long)

6.2.3 Security Pin Code Command

Usage: pin <ConnID> <Pin Code>

ConnID Connection ID

Pin Code Security Pin Code

