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1 Preface 

This document describes the ARM Cordio software system and lists the API functions and their 

parameters.  

1.1 About this book 

This book is written for experienced software engineers who might or might not have experience with 

ARM products. Such engineers typically have experience of writing Bluetooth applications but might 

have limited experience of the Cordio software stack. 

It is also assumed that the readers have access to all necessary tools. 

1.1.1 Using this book 

This book is organized into the following chapters: 

• Introduction 

Read this for an overview of the process of configuring and implementing the IoT subsystem. 

• Software System 

Read this for an overview of components in the software. 

• Software Architecture 

Read this for a description of the functions in the API. 

• Data Path 

Read this for a description of the data flow from the application, stack, and the HCI. 

• Porting 

Read this for a description of the porting process. 

• Directory Structure 

Read this for the details of the directories. 

• Revisions 

Read this chapter for descriptions of the changes between document versions.  

1.1.2 Intended audience 

This book is written for experienced hardware and System-on-Chip (SoC) engineers who might or 

might not have experience with ARM products. Such engineers typically have experience of writing 

Verilog and of performing synthesis, but might have limited experience of integrating and 

implementing ARM products. 

It is also assumed that the readers have access to all necessary tools. 

1.1.3 Terms and abbreviations 

For a list of ARM terms, see the ARM glossary.  

Terms specific to the Cordio software are listed below: 

Term Description 

ACL Asynchronous Connectionless data packet 

AD Advertising Data 

ARQ Automatic Repeat reQuest 

ATT Attribute Protocol, also attribute protocol software subsystem 

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html
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ATTC Attribute Protocol Client software subsystem 

ATTS Attribute Protocol Server software subsystem 

CCC or CCCD Client Characteristic Configuration Descriptor 

CID Connection Identifier 

CSRK Connection Signature Resolving Key 

DM Device Manager software subsystem 

GAP Generic Access Profile 

GATT Generic Attribute Profile 

HCI Host Controller Interface 

IRK Identity Resolving Key 

JIT Just In Time 

L2C L2CAP software subsystem 

L2CAP Logical Link Control Adaptation Protocol 

LE (Bluetooth) Low Energy 

LL Link Layer 

LLPC Link Layer Control Protocol 

LTK Long Term Key 

MITM Man In The Middle pairing (authenticated pairing) 

OOB Out Of Band data 

SMP Security Manager Protocol, also security manager protocol software subsystem 

SMPI Security Manager Protocol Initiator software subsystem 

SMPR Security Manager Protocol Responder software subsystem 

STK Short Term Key 

WSF Wireless Software Foundation software service and porting layer. 
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1.1.4 Conventions 

The following table describes the typographical conventions:  

Typographical conventions  

Style Purpose 

Italic Introduces special terminology, denotes cross-references, and 

citations.  

bold Highlights interface elements, such as menu names. Denotes 

signal names. Also used for terms in descriptive lists, where 

appropriate. 

MONOSPACE Denotes text that you can enter at the keyboard, such as 

commands, file and program names, and source code. 

MONOSPACE Denotes a permitted abbreviation for a command or option. You 

can enter the underlined text instead of the full command or option 

name. 

monospace italic Denotes arguments to monospace text where the argument is to be 

replaced by a specific value. 

monospace bold  Denotes language keywords when used outside example code. 

<and> Encloses replaceable terms for assembler syntax where they 

appear in code or code fragments. For example: 

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2> 

SMALL CAPITALS Used in body text for a few terms that have specific technical 

meanings, that are defined in the ARM® Glossary. For example, 

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, 

and UNPREDICTABLE. 

 

1.1.5 Additional reading 

This section lists publications by ARM and by third parties. 

See Infocenter for access to ARM documentation. 

Other publications 

This section lists relevant documents published by third parties:  

• Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015. 

• Bluetooth SIG, “Specification of the Bluetooth System”, Version 5.0, December 7, 2016. 

 

1.2 Feedback 

ARM welcomes feedback on this product and its documentation. 

http://infocenter.arm.com/
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1.2.1 Feedback on content 

If you have comments on content then send an e-mail to support-cordio-sw@arm.com. Give:  

• The title.  

• The number, ARM-EPM-115881.  

• The page numbers to which your comments apply.  

• A concise explanation of your comments. 

ARM also welcomes general suggestions for additions and improvements. 

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the 

quality of the represented document when used with any other PDF reader. 
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2 Introduction 

This document describes the system architecture of ARM’s Bluetooth low energy software system. 
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3 Software System 

The Bluetooth LE software system consists of two main components: 

• The Cordio Stack is complete protocol stack solution for single-mode Bluetooth LE devices.   

• The Cordio Profiles consists of sample applications, interoperable Bluetooth profile and service 

components, and a service layer for simplified application development and porting. 

The software system is built on the Wireless Software Foundation (WSF), an OS wrapper and porting 

layer.  WSF also provides general-purpose software services such as queues, timers, and buffer 

management. 

3.1 System Configuration 

The Cordio Stack and Profiles are designed to support single-chip SoC systems and dual-chip systems.  

When operating in a single-chip system the Cordio Stack and Profiles run on the processor inside the 

SoC.  A "thin" HCI layer adapts to the software interface of the target’s LE link layer.   

When operating in a dual-chip system the Cordio Stack and Profiles run on a microcontroller and 

communicate with a Bluetooth LE controller chip over a wired interface such as UART or SPI. A 

standard transport-based HCI layer manages the communication between the two devices. 

 

Figure 1.  Cordio Stack and Profiles in a single-chip SoC system and dual-chip system 

3.2 Cordio Profiles 

ARM’s Cordio Profiles consist of sample applications, interoperable Bluetooth profile and service 

components, and a service layer called the App Framework for simplified application development and 

porting. 
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Figure 2.  Cordio Profiles software system. 

3.2.1 Sample Applications 

ARM’s Bluetooth low energy sample applications provide example source code for products such as a 

proximity keyfob, health sensor, and watch.  The sample applications are designed with a product-

oriented focus, with each application supporting one or more Bluetooth LE profile.  The sample 

applications interface to the Profiles and Services and the App Framework. 

3.2.2 Profiles and Services 

The profiles and services are interoperable components designed to Bluetooth profile and service 

specification requirements.  The profiles and services are used in applications to implement particular 

profile and service features. 

The profiles are implemented in separate files for each profile role.  The services, however, may be 

grouped together in files based on their logical function and the profile they are used by. 

3.2.3 App Framework 

 The App Framework performs many operations common to Bluetooth LE embedded applications, 

such as: 

• Application-level device, connection, and security management. 

• Simple user interface abstractions for button press handling, sounds, display, and other user 

feedback. 

• An abstracted device database for storing bonding data and other device parameters. 

 

Figure 3.  App Framework software subsystem 

The App Framework consists of several modules, each with their own API interface file: 

• Main:  Device, connection, and security management. 

• UI:  User interface abstraction. 

• DB:  Device database. 

 

Sample Applications 

Profiles and Services 

App Framework 

App Framework 

Main UI DB HW 
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• HW:  Hardware sensor interface abstraction. 

3.3 Cordio Stack 

The Cordio Stack is complete host protocol stack solution for single-mode Bluetooth LE devices.  It 

consists of five protocol layers: 

• ATT:  Attribute protocol. 

• SMP:  Security manager protocol. 

• L2C:  L2CAP protocol. 

• HCI:  Host controller interface protocol. 

• DM:  Device manager. 

 

Figure 4.  Cordio Stack software system 

3.3.1 ATT 

The ATT subsystem implements the attribute protocol and generic attribute profile (GATT).  It 

contains two independent subsystems:  The attribute protocol client (ATTC) and attribute protocol 

server (ATTS).  

ATTC implements all attribute protocol client features and is designed to meet the client requirements 

of the generic attribute profile.  ATTC can support multiple simultaneous connections to different 

servers. 

ATTS implements all attribute protocol server features and has support for multiple simultaneous client 

connections.  ATTS also implements the server features defined by the generic attribute profile. 

3.3.2 SMP 

The SMP subsystem implements the security manager protocol.  It contains two independent 

subsystems:   

• The initiator (SMPI). SMPI implements the initiator features of the security manager protocol 

and has support for multiple simultaneous connections.  

• The responder (SMPR). SMPR implements the responder features of the security manager 

protocol and has support for only one connection (by Bluetooth specification design). 

SMP also implements the cryptographic toolbox, which uses AES.  The interface to AES is 

asynchronous and abstracted through WSF.  SMP also implements functions to support data signing. 

3.3.3 L2C 

The L2C subsystem implements the LE L2CAP protocol.  It is a substantially scaled-down version of 

 

ATT SMP 

L2C 

HCI 

DM 
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regular Bluetooth L2CAP. 

In the TX data path, the main function of L2C is building L2CAP packets and sending them to HCI.  In 

the RX data path, its main function is receiving packets from HCI and routing them to either SMP or 

ATT. 

L2C also implements the connection parameter update procedure. 

3.3.4 HCI 

The HCI subsystem implements the host-controller interface specification.  This specification defines 

commands, events, and data packets sent between a Bluetooth LE protocol stack on a host and a link 

layer on a controller. 

The HCI API is optimized to be a thin interface layer for a single chip system.  It is configurable for 

either a single chip system or traditional system with wired HCI. 

This configurability is accomplished through a layered implementation.  A core layer can be configured 

for either a single chip system or wired HCI.  A transport and driver layer below the core layer can be 

configured for different wired transports such as UART. 

3.3.5 DM 

The DM subsystem implements device management procedures required by the stack.   These 

procedures are partitioned by procedure category and device role (master or slave).  The following 

procedures are implemented in DM: 

• Advertising and device visibility:  Enable/disable advertising, set advertising parameters and 

data, set connectability and discoverability. 

• Scanning and device discovery: Start/stop scanning, set scan parameters, advertising reports, 

name discovery. 

• Connection management:  Create/accept/remove connections, set/update connection parameters, 

read RSSI. 

• Security management:  Bonding, storage of security parameters, authentication, encryption, 

authorization, random address management. 

• Local device management:  Initialization and reset, set local parameters, vendor-specific 

commands. 

DM procedures support the Generic Access Profile (GAP) when applicable. 

3.4 WSF 

The Wireless Software Foundation (WSF) is a simple OS wrapper, porting layer, and general-purpose 

software service used by the software system.  The goal of WSF is to stay small and lean, supporting 

only the basic services required by the stack.  It consists of the following: 

• Event handler service with event and message passing. 

• Timer service. 

• Queue and buffer management service. 

• Portable data types. 

• Critical sections and task locking. 

• Trace and assert diagnostic services. 

• Security interfaces for encryption and random number generation. 
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4 Software Architecture 

This section describes the functions in the API. 

4.1 Interface Architecture 

The software system uses function calls and callback functions in its APIs, as described below. 

4.1.1 Message Passing API Functions 

Message passing API functions result in a message being sent to the task running the stack.  These 

functions typically involve a complex operation, such as creating a connection, and do not access 

internal (private) data. 

4.1.2 Direct Execute API Functions 

Direct execute API functions run entirely in the context of the calling function.  These functions 

typically involve simple operations like reading or setting internal data.  Task scheduling must be 

locked when accessing internal data. 

4.1.3 Callback Functions 

Callback functions are implemented by the client using the protocol stack and execute in the context of 

the stack.  Callback functions are used to send events and data to the client. 

 

Figure 5.  Message passing and direct execute interfaces. 

 

4.2 Event Handlers and Tasks 

The ARM software system defines an event handler service that forms a basis for the asynchronous 

communication mechanisms used in the system.  An event handler can receive messages and events.  

Each software subsystem typically has its own event handler; for example, each layer of the protocol 

stack has its own event handler. 

The stack is designed to be flexible and allow for different task architectures.   The software system 

does not define any tasks but defines some interfaces to tasks.  It relies on the target OS to implement 

tasks and manage the timer and event handler services from target OS tasks.  A typical single-chip 

software system will use separate tasks for the application, stack, and link layer.  However there is 
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nothing in the design of the protocol stack or profiles that prevent them from being run in the same task 

as other software systems. 

 

Figure 6.  Example system showing event handlers executing within an OS task 
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5 Data Path 

This section describes the data flow between applications and the HCI. 

5.1 TX Path 

The TX data path covers the flow of data as it is sent from the application, through the stack, and then 

on to HCI. 

There can be two data copies in the TX data path:   

• When data is sent from the application to the stack  

• When data is sent from the stack to HCI.   

The stack does not copy data internally between layers. 

The allocation and deallocation of data buffers takes place at the point where data is copied.  When the 

application sends data to the stack, a buffer is allocated and data is copied to the buffer.  When data is 

sent from the stack to the HCI or the link layer, the data is copied to an HCI or link layer buffer and the 

stack buffer is deallocated. 

 

Figure 7.  TX data path 

 

5.2 RX Path 

The RX data path covers the flow of data as it is sent from HCI, through the stack, and then on to the 

application.  Like the TX path, there can be two data copies in the RX data path:  when data is sent 

from the stack to the application and when data is sent from HCI to the stack.  The stack does not copy 

data internally between layers. 

Buffers are allocated by the HCI layer and then deallocated internally by the stack. 
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Figure 8.  RX data path 
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6 Porting 

The porting process typically consists of two main steps: 

1. Porting WSF interfaces and services to the target OS and software system. 

2. Porting HCI to the target system and writing a transport driver, if applicable. 

6.1 WSF Porting 

Porting WSF typically consists of the following steps: 

1. Create common data types for the target compiler. 

2. Interface to a system timer to receive timer updates. 

3. Implement WSF OS wrapper functions and interfaces. 

4. Implement WSF diagnostics. 

 

Figure 9.  WSF porting process to a target system 

 

6.2 HCI Porting 

Cordio’s HCI layer is designed to be portable and support different transport and chip configurations.  

The porting process depends on the chip configuration:  If the stack is ported to a single-chip system 

then a “thin HCI” porting process is used.  If the stack is ported to a two-chip system with wired HCI 

transport then a transport-based porting process is used. 

Target System 
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7 Directory Structure 

The contents of the root directory are listed in the table below: 

Table 1: Root directory 

Directory Description 

documentation Documentation 

wsf Wireless Software Foundation  

ble-host Cordio Stack software 

ble-profiles Cordio Profiles platform and sample projects 

platform Platform integration and example source 

projects Cordio sample applications 

 

7.1 ble-host directory 

Table 2: sw directory 

Directory Description 

build Build configuration / Makefiles 

include Host API  

sources/hci Host HCI source 

sources/sec Host security support (AES, ECC) 

sources/stack Host stack source 

 

7.2 ble-profiles directory 

Table 3: sw directory 

Directory Description 

build Build configuration / Makefiles 

include Profiles API  

sources/apps Application framework and sample applications 

sources/profiles Bluetooth LE profiles  

sources/services Bluetooth LE services 
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The apps directory contains the Application Framework and sample applications. 

Table 4: apps directory 

Directory Description 

app App Framework 

cycling Cycling sensor sample application 

datc Proprietary data transfer client sample application 

dats Proprietary data transfer server sample application 

fit Fitness sensor sample application 

gluc Glucose sensor sample application 

hidapp HID sample application 

medc Health data collector sample application 

meds Health sensor sample application 

sensor Sensor sample application 

tag Proximity tag sample application 

uribeacon Uribeacon sample application 

watch Watch sample application 

wdxs Wireless data exchange application  

 

The profiles directory contains the Bluetooth LE profiles. 

Table 3: profiles directory 

Directory Description 

anpc Alert Notification Profile client 

bas Battery Service server 

blpc Blood Pressure Profile client 

blps Blood Pressure Profile server 

cpp Cycling Power Profile server 

cscp Cycling Speed and Cadence Profile server 

dis Device Information Service client 

fmpl Find Me Profile locator 
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gap Gap Profile 

gatt Generic Attribute Profile client 

glpc Glucose Profile client 

glps Glucose Profile server 

hid HID device 

hrpc Heart Rate Profile client 

hrps Heart Rate Profile server 

htpc Health Thermometer Profile client 

htps Health Thermometer Profile server 

paspc Phone Alert Status Profile client 

plxpc Pulse Oximeter Profile collector 

plxps Pulse Oximeter Profile sensor 

rscp Running Speed and Cadence Profile sensor 

scpps Scan Parameter Profile server 

sensor Example Temperature and Gyroscope Service Profile 

tipc Time Profile client 

udsc User Data Service Collector 

uribeacon Uribeacon Configuration Profile 

wdxs Proprietary Data Exchange Server Profile  

wdxc Proprietary Data Exchange Client Profile  

wpc Cordio proprietary profile client 

wspc Weight Scale Profile client 

wsps Weight Scale Profile server 

 

 


