
Copyright  2012-2016 ARM. All rights reserved. Page 1

Confidential

ARM® Cordio Stack

ARM-EPM-115881 2.0

Stack System Architecture

Confidential

Copyright  2012-2016 ARM. All rights reserved Page 2

 Confidential

ARM® Cordio Stack

System Architecture Reference
Copyright © 2012-2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Issue Confidentiality Change

25 September 2015
-

Non-Confidential
First Wicentric release for 1.1 as 2012-

0023

1 March 2016 A Confidential First ARM release for 1.1

24 August 2016 1.0 Confidential AUSPEX # / Directory Structure

15 December 2016 1.1 Confidential BT 5.0 Update

10 August 2017 2.0 Confidential Folder Structure

Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the information contained in this

document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any

form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to

any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the

information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology

or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or

creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for

publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this

document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,

SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE

DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or

understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING

WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,

HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS

DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this

document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,

directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to

create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without

notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this

document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This

document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version

of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or

elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.

Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright  2012-2016 ARM. All rights reserved Page 3

 Confidential

Copyright © 2012-2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status
This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance

with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 4

 Confidential

Contents

ARM® Cordio Stack 1

1 Preface 6

1.1 About this book 6

1.1.1 Using this book 6

1.1.2 Intended audience 6

1.1.3 Terms and abbreviations 6

1.1.4 Conventions 8

1.1.5 Additional reading 8

1.2 Feedback 8

1.2.1 Feedback on content 9

2 Introduction 10

3 Software System 11

3.1 System Configuration 11

3.2 Cordio Profiles 11

3.2.1 Sample Applications 12

3.2.2 Profiles and Services 12

3.2.3 App Framework 12

3.3 Cordio Stack 13

3.3.1 ATT 13

3.3.2 SMP 13

3.3.3 L2C 13

3.3.4 HCI 14

3.3.5 DM 14

3.4 WSF 14

4 Software Architecture 15

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 5

 Confidential

4.1 Interface Architecture 15

4.1.1 Message Passing API Functions 15

4.1.2 Direct Execute API Functions 15

4.1.3 Callback Functions 15

4.2 Event Handlers and Tasks 15

5 Data Path 17

5.1 TX Path 17

5.2 RX Path 17

6 Porting 19

6.1 WSF Porting 19

6.2 HCI Porting 19

7 Directory Structure 20

7.1 ble-host directory 20

7.2 ble-profiles directory 20

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 6

 Confidential

1 Preface

This document describes the ARM Cordio software system and lists the API functions and their

parameters.

1.1 About this book

This book is written for experienced software engineers who might or might not have experience with

ARM products. Such engineers typically have experience of writing Bluetooth applications but might

have limited experience of the Cordio software stack.

It is also assumed that the readers have access to all necessary tools.

1.1.1 Using this book

This book is organized into the following chapters:

• Introduction

Read this for an overview of the process of configuring and implementing the IoT subsystem.

• Software System

Read this for an overview of components in the software.

• Software Architecture

Read this for a description of the functions in the API.

• Data Path

Read this for a description of the data flow from the application, stack, and the HCI.

• Porting

Read this for a description of the porting process.

• Directory Structure

Read this for the details of the directories.

• Revisions

Read this chapter for descriptions of the changes between document versions.

1.1.2 Intended audience

This book is written for experienced hardware and System-on-Chip (SoC) engineers who might or

might not have experience with ARM products. Such engineers typically have experience of writing

Verilog and of performing synthesis, but might have limited experience of integrating and

implementing ARM products.

It is also assumed that the readers have access to all necessary tools.

1.1.3 Terms and abbreviations

For a list of ARM terms, see the ARM glossary.

Terms specific to the Cordio software are listed below:

Term Description

ACL Asynchronous Connectionless data packet

AD Advertising Data

ARQ Automatic Repeat reQuest

ATT Attribute Protocol, also attribute protocol software subsystem

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 7

 Confidential

ATTC Attribute Protocol Client software subsystem

ATTS Attribute Protocol Server software subsystem

CCC or CCCD Client Characteristic Configuration Descriptor

CID Connection Identifier

CSRK Connection Signature Resolving Key

DM Device Manager software subsystem

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IRK Identity Resolving Key

JIT Just In Time

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

OOB Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem

SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 8

 Confidential

1.1.4 Conventions

The following table describes the typographical conventions:

Typographical conventions

Style Purpose

Italic Introduces special terminology, denotes cross-references, and

citations.

bold Highlights interface elements, such as menu names. Denotes

signal names. Also used for terms in descriptive lists, where

appropriate.

MONOSPACE Denotes text that you can enter at the keyboard, such as

commands, file and program names, and source code.

MONOSPACE Denotes a permitted abbreviation for a command or option. You

can enter the underlined text instead of the full command or option

name.

monospace italic Denotes arguments to monospace text where the argument is to be

replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

<and> Encloses replaceable terms for assembler syntax where they

appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical

meanings, that are defined in the ARM® Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,

and UNPREDICTABLE.

1.1.5 Additional reading

This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.

Other publications

This section lists relevant documents published by third parties:

• Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

• Bluetooth SIG, “Specification of the Bluetooth System”, Version 5.0, December 7, 2016.

1.2 Feedback

ARM welcomes feedback on this product and its documentation.

http://infocenter.arm.com/

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 9

 Confidential

1.2.1 Feedback on content

If you have comments on content then send an e-mail to support-cordio-sw@arm.com. Give:

• The title.

• The number, ARM-EPM-115881.

• The page numbers to which your comments apply.

• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the

quality of the represented document when used with any other PDF reader.

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 10

 Confidential

2 Introduction

This document describes the system architecture of ARM’s Bluetooth low energy software system.

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 11

 Confidential

3 Software System

The Bluetooth LE software system consists of two main components:

• The Cordio Stack is complete protocol stack solution for single-mode Bluetooth LE devices.

• The Cordio Profiles consists of sample applications, interoperable Bluetooth profile and service

components, and a service layer for simplified application development and porting.

The software system is built on the Wireless Software Foundation (WSF), an OS wrapper and porting

layer. WSF also provides general-purpose software services such as queues, timers, and buffer

management.

3.1 System Configuration

The Cordio Stack and Profiles are designed to support single-chip SoC systems and dual-chip systems.

When operating in a single-chip system the Cordio Stack and Profiles run on the processor inside the

SoC. A "thin" HCI layer adapts to the software interface of the target’s LE link layer.

When operating in a dual-chip system the Cordio Stack and Profiles run on a microcontroller and

communicate with a Bluetooth LE controller chip over a wired interface such as UART or SPI. A

standard transport-based HCI layer manages the communication between the two devices.

Figure 1. Cordio Stack and Profiles in a single-chip SoC system and dual-chip system

3.2 Cordio Profiles

ARM’s Cordio Profiles consist of sample applications, interoperable Bluetooth profile and service

components, and a service layer called the App Framework for simplified application development and

porting.

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 12

 Confidential

Figure 2. Cordio Profiles software system.

3.2.1 Sample Applications

ARM’s Bluetooth low energy sample applications provide example source code for products such as a

proximity keyfob, health sensor, and watch. The sample applications are designed with a product-

oriented focus, with each application supporting one or more Bluetooth LE profile. The sample

applications interface to the Profiles and Services and the App Framework.

3.2.2 Profiles and Services

The profiles and services are interoperable components designed to Bluetooth profile and service

specification requirements. The profiles and services are used in applications to implement particular

profile and service features.

The profiles are implemented in separate files for each profile role. The services, however, may be

grouped together in files based on their logical function and the profile they are used by.

3.2.3 App Framework

 The App Framework performs many operations common to Bluetooth LE embedded applications,

such as:

• Application-level device, connection, and security management.

• Simple user interface abstractions for button press handling, sounds, display, and other user

feedback.

• An abstracted device database for storing bonding data and other device parameters.

Figure 3. App Framework software subsystem

The App Framework consists of several modules, each with their own API interface file:

• Main: Device, connection, and security management.

• UI: User interface abstraction.

• DB: Device database.

Sample Applications

Profiles and Services

App Framework

App Framework

Main UI DB HW

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 13

 Confidential

• HW: Hardware sensor interface abstraction.

3.3 Cordio Stack

The Cordio Stack is complete host protocol stack solution for single-mode Bluetooth LE devices. It

consists of five protocol layers:

• ATT: Attribute protocol.

• SMP: Security manager protocol.

• L2C: L2CAP protocol.

• HCI: Host controller interface protocol.

• DM: Device manager.

Figure 4. Cordio Stack software system

3.3.1 ATT

The ATT subsystem implements the attribute protocol and generic attribute profile (GATT). It

contains two independent subsystems: The attribute protocol client (ATTC) and attribute protocol

server (ATTS).

ATTC implements all attribute protocol client features and is designed to meet the client requirements

of the generic attribute profile. ATTC can support multiple simultaneous connections to different

servers.

ATTS implements all attribute protocol server features and has support for multiple simultaneous client

connections. ATTS also implements the server features defined by the generic attribute profile.

3.3.2 SMP

The SMP subsystem implements the security manager protocol. It contains two independent

subsystems:

• The initiator (SMPI). SMPI implements the initiator features of the security manager protocol

and has support for multiple simultaneous connections.

• The responder (SMPR). SMPR implements the responder features of the security manager

protocol and has support for only one connection (by Bluetooth specification design).

SMP also implements the cryptographic toolbox, which uses AES. The interface to AES is

asynchronous and abstracted through WSF. SMP also implements functions to support data signing.

3.3.3 L2C

The L2C subsystem implements the LE L2CAP protocol. It is a substantially scaled-down version of

ATT SMP

L2C

HCI

DM

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 14

 Confidential

regular Bluetooth L2CAP.

In the TX data path, the main function of L2C is building L2CAP packets and sending them to HCI. In

the RX data path, its main function is receiving packets from HCI and routing them to either SMP or

ATT.

L2C also implements the connection parameter update procedure.

3.3.4 HCI

The HCI subsystem implements the host-controller interface specification. This specification defines

commands, events, and data packets sent between a Bluetooth LE protocol stack on a host and a link

layer on a controller.

The HCI API is optimized to be a thin interface layer for a single chip system. It is configurable for

either a single chip system or traditional system with wired HCI.

This configurability is accomplished through a layered implementation. A core layer can be configured

for either a single chip system or wired HCI. A transport and driver layer below the core layer can be

configured for different wired transports such as UART.

3.3.5 DM

The DM subsystem implements device management procedures required by the stack. These

procedures are partitioned by procedure category and device role (master or slave). The following

procedures are implemented in DM:

• Advertising and device visibility: Enable/disable advertising, set advertising parameters and

data, set connectability and discoverability.

• Scanning and device discovery: Start/stop scanning, set scan parameters, advertising reports,

name discovery.

• Connection management: Create/accept/remove connections, set/update connection parameters,

read RSSI.

• Security management: Bonding, storage of security parameters, authentication, encryption,

authorization, random address management.

• Local device management: Initialization and reset, set local parameters, vendor-specific

commands.

DM procedures support the Generic Access Profile (GAP) when applicable.

3.4 WSF

The Wireless Software Foundation (WSF) is a simple OS wrapper, porting layer, and general-purpose

software service used by the software system. The goal of WSF is to stay small and lean, supporting

only the basic services required by the stack. It consists of the following:

• Event handler service with event and message passing.

• Timer service.

• Queue and buffer management service.

• Portable data types.

• Critical sections and task locking.

• Trace and assert diagnostic services.

• Security interfaces for encryption and random number generation.

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 15

 Confidential

4 Software Architecture

This section describes the functions in the API.

4.1 Interface Architecture

The software system uses function calls and callback functions in its APIs, as described below.

4.1.1 Message Passing API Functions

Message passing API functions result in a message being sent to the task running the stack. These

functions typically involve a complex operation, such as creating a connection, and do not access

internal (private) data.

4.1.2 Direct Execute API Functions

Direct execute API functions run entirely in the context of the calling function. These functions

typically involve simple operations like reading or setting internal data. Task scheduling must be

locked when accessing internal data.

4.1.3 Callback Functions

Callback functions are implemented by the client using the protocol stack and execute in the context of

the stack. Callback functions are used to send events and data to the client.

Figure 5. Message passing and direct execute interfaces.

4.2 Event Handlers and Tasks

The ARM software system defines an event handler service that forms a basis for the asynchronous

communication mechanisms used in the system. An event handler can receive messages and events.

Each software subsystem typically has its own event handler; for example, each layer of the protocol

stack has its own event handler.

The stack is designed to be flexible and allow for different task architectures. The software system

does not define any tasks but defines some interfaces to tasks. It relies on the target OS to implement

tasks and manage the timer and event handler services from target OS tasks. A typical single-chip

software system will use separate tasks for the application, stack, and link layer. However there is

Application Stack

Message Passing API

Callback Function

Direct Execute API

return

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 16

 Confidential

nothing in the design of the protocol stack or profiles that prevent them from being run in the same task

as other software systems.

Figure 6. Example system showing event handlers executing within an OS task

OS Task 1

WSF

handler

handler

handler

OS Task 2

Application

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 17

 Confidential

5 Data Path

This section describes the data flow between applications and the HCI.

5.1 TX Path

The TX data path covers the flow of data as it is sent from the application, through the stack, and then

on to HCI.

There can be two data copies in the TX data path:

• When data is sent from the application to the stack

• When data is sent from the stack to HCI.

The stack does not copy data internally between layers.

The allocation and deallocation of data buffers takes place at the point where data is copied. When the

application sends data to the stack, a buffer is allocated and data is copied to the buffer. When data is

sent from the stack to the HCI or the link layer, the data is copied to an HCI or link layer buffer and the

stack buffer is deallocated.

Figure 7. TX data path

5.2 RX Path

The RX data path covers the flow of data as it is sent from HCI, through the stack, and then on to the

application. Like the TX path, there can be two data copies in the RX data path: when data is sent

from the stack to the application and when data is sent from HCI to the stack. The stack does not copy

data internally between layers.

Buffers are allocated by the HCI layer and then deallocated internally by the stack.

Application Stack

ATT API function

Allocate buffer

build packet

HCI Transport

HCI transport function

Copy data

Deallocate buffer

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 18

 Confidential

Figure 8. RX data path

Application Stack

Appl. callback function

Process Packet

HCI Transport

L2C callback function

Allocate buffer

Copy data

Copy data

Send message

Deallocate buffer

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 19

 Confidential

6 Porting

The porting process typically consists of two main steps:

1. Porting WSF interfaces and services to the target OS and software system.

2. Porting HCI to the target system and writing a transport driver, if applicable.

6.1 WSF Porting

Porting WSF typically consists of the following steps:

1. Create common data types for the target compiler.

2. Interface to a system timer to receive timer updates.

3. Implement WSF OS wrapper functions and interfaces.

4. Implement WSF diagnostics.

Figure 9. WSF porting process to a target system

6.2 HCI Porting

Cordio’s HCI layer is designed to be portable and support different transport and chip configurations.

The porting process depends on the chip configuration: If the stack is ported to a single-chip system

then a “thin HCI” porting process is used. If the stack is ported to a two-chip system with wired HCI

transport then a transport-based porting process is used.

Target System

Data types Timer

OS wrapper Diagnostics

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 20

 Confidential

7 Directory Structure

The contents of the root directory are listed in the table below:

Table 1: Root directory

Directory Description

documentation Documentation

wsf Wireless Software Foundation

ble-host Cordio Stack software

ble-profiles Cordio Profiles platform and sample projects

platform Platform integration and example source

projects Cordio sample applications

7.1 ble-host directory

Table 2: sw directory

Directory Description

build Build configuration / Makefiles

include Host API

sources/hci Host HCI source

sources/sec Host security support (AES, ECC)

sources/stack Host stack source

7.2 ble-profiles directory

Table 3: sw directory

Directory Description

build Build configuration / Makefiles

include Profiles API

sources/apps Application framework and sample applications

sources/profiles Bluetooth LE profiles

sources/services Bluetooth LE services

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 21

 Confidential

The apps directory contains the Application Framework and sample applications.

Table 4: apps directory

Directory Description

app App Framework

cycling Cycling sensor sample application

datc Proprietary data transfer client sample application

dats Proprietary data transfer server sample application

fit Fitness sensor sample application

gluc Glucose sensor sample application

hidapp HID sample application

medc Health data collector sample application

meds Health sensor sample application

sensor Sensor sample application

tag Proximity tag sample application

uribeacon Uribeacon sample application

watch Watch sample application

wdxs Wireless data exchange application

The profiles directory contains the Bluetooth LE profiles.

Table 3: profiles directory

Directory Description

anpc Alert Notification Profile client

bas Battery Service server

blpc Blood Pressure Profile client

blps Blood Pressure Profile server

cpp Cycling Power Profile server

cscp Cycling Speed and Cadence Profile server

dis Device Information Service client

fmpl Find Me Profile locator

System Architecture

Copyright  2012-2016 ARM. All rights reserved Page 22

 Confidential

gap Gap Profile

gatt Generic Attribute Profile client

glpc Glucose Profile client

glps Glucose Profile server

hid HID device

hrpc Heart Rate Profile client

hrps Heart Rate Profile server

htpc Health Thermometer Profile client

htps Health Thermometer Profile server

paspc Phone Alert Status Profile client

plxpc Pulse Oximeter Profile collector

plxps Pulse Oximeter Profile sensor

rscp Running Speed and Cadence Profile sensor

scpps Scan Parameter Profile server

sensor Example Temperature and Gyroscope Service Profile

tipc Time Profile client

udsc User Data Service Collector

uribeacon Uribeacon Configuration Profile

wdxs Proprietary Data Exchange Server Profile

wdxc Proprietary Data Exchange Client Profile

wpc Cordio proprietary profile client

wspc Weight Scale Profile client

wsps Weight Scale Profile server

