Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision
  • add_menu_vibration
  • blinkisync-as-preload
  • ch3/api-speed-eval2
  • ch3/dual-core
  • ch3/genapi-refactor
  • ch3/leds-api
  • ch3/splashscreen
  • dualcore
  • fix-warnings
  • freertos-btle
  • genofire/ble-follow-py
  • koalo/bhi160-works-but-dirty
  • koalo/factory-reset
  • koalo/wip/i2c-for-python
  • master
  • msgctl/faultscreen
  • msgctl/gfx_rle
  • msgctl/textbuffer_api
  • plaetzchen/ios-workaround
  • rahix/bhi
  • rahix/bma
  • renze/hatchery_apps
  • renze/safe_mode
  • schleicher-test
  • schneider/ble-buffers
  • schneider/ble-stability
  • schneider/ble-stability-new-phy
  • schneider/ble-stability-new-phy-adv
  • schneider/bonding
  • schneider/bootloader-update-9a0d158
  • schneider/bsec
  • schneider/fundamental-test
  • schneider/max30001
  • schneider/max30001-epicaridum
  • schneider/max30001-pycardium
  • schneider/maxim-sdk-update
  • schneider/mp-for-old-bl
  • schneider/schleicher-test
  • schneider/stream-locks
  • tvbgone-fixes
  • bootloader-v1
  • release-1
  • v0.0
  • v1.0
  • v1.1
  • v1.10
  • v1.11
  • v1.2
  • v1.3
  • v1.4
  • v1.5
  • v1.6
  • v1.7
  • v1.8
  • v1.9
55 results

Target

Select target project
  • card10/firmware
  • annejan/firmware
  • astro/firmware
  • fpletz/firmware
  • gerd/firmware
  • fleur/firmware
  • swym/firmware
  • l/firmware
  • uberardy/firmware
  • wink/firmware
  • madonius/firmware
  • mot/firmware
  • filid/firmware
  • q3k/firmware
  • hauke/firmware
  • Woazboat/firmware
  • pink/firmware
  • mossmann/firmware
  • omniskop/firmware
  • zenox/firmware
  • trilader/firmware
  • Danukeru/firmware
  • shoragan/firmware
  • zlatko/firmware
  • sistason/firmware
  • datenwolf/firmware
  • bene/firmware
  • amedee/firmware
  • martinling/firmware
  • griffon/firmware
  • chris007/firmware
  • adisbladis/firmware
  • dbrgn/firmware
  • jelly/firmware
  • rnestler/firmware
  • mh/firmware
  • ln/firmware
  • penguineer/firmware
  • monkeydom/firmware
  • jens/firmware
  • jnaulty/firmware
  • jeffmakes/firmware
  • marekventur/firmware
  • pete/firmware
  • h2obrain/firmware
  • DooMMasteR/firmware
  • jackie/firmware
  • prof_r/firmware
  • Draradech/firmware
  • Kartoffel/firmware
  • hinerk/firmware
  • abbradar/firmware
  • JustTB/firmware
  • LuKaRo/firmware
  • iggy/firmware
  • ente/firmware
  • flgr/firmware
  • Lorphos/firmware
  • matejo/firmware
  • ceddral7/firmware
  • danb/firmware
  • joshi/firmware
  • melle/firmware
  • fitch/firmware
  • deurknop/firmware
  • sargon/firmware
  • markus/firmware
  • kloenk/firmware
  • lucaswerkmeister/firmware
  • derf/firmware
  • meh/firmware
  • dx/card10-firmware
  • torben/firmware
  • yuvadm/firmware
  • AndyBS/firmware
  • klausdieter1/firmware
  • katzenparadoxon/firmware
  • xiretza/firmware
  • ole/firmware
  • techy/firmware
  • thor77/firmware
  • TilCreator/firmware
  • fuchsi/firmware
  • dos/firmware
  • yrlf/firmware
  • PetePriority/firmware
  • SuperVirus/firmware
  • sur5r/firmware
  • tazz/firmware
  • Alienmaster/firmware
  • flo_h/firmware
  • baldo/firmware
  • mmu_man/firmware
  • Foaly/firmware
  • sodoku/firmware
  • Guinness/firmware
  • ssp/firmware
  • led02/firmware
  • Stormwind/firmware
  • arist/firmware
  • coon/firmware
  • mdik/firmware
  • pippin/firmware
  • royrobotiks/firmware
  • zigot83/firmware
  • mo_k/firmware
106 results
Select Git revision
  • add_menu_vibration
  • blinkisync-as-preload
  • ch3/api-speed-eval2
  • ch3/dual-core
  • ch3/genapi-refactor
  • ch3/leds-api
  • ch3/splashscreen
  • dualcore
  • dx/flatten-config-module
  • dx/meh-bdf-to-stm
  • freertos-btle
  • genofire/ble-follow-py
  • koalo/bhi160-works-but-dirty
  • koalo/factory-reset
  • koalo/wip/i2c-for-python
  • master
  • msgctl/faultscreen
  • msgctl/textbuffer_api
  • plaetzchen/ios-workaround
  • rahix/bhi
  • rahix/bluetooth-app-favorite
  • rahix/bma
  • rahix/user-space-ctx
  • renze/hatchery_apps
  • renze/safe_mode
  • schleicher-test
  • schneider/212-reset-hardware-when-entering-repl
  • schneider/ancs
  • schneider/ble-buffers
  • schneider/ble-central
  • schneider/ble-ecg-stream-visu
  • schneider/ble-fixes-2020-3
  • schneider/ble-mini-demo
  • schneider/ble-stability
  • schneider/ble-stability-new-phy
  • schneider/bonding
  • schneider/bonding-fail-if-full
  • schneider/bootloader-update-9a0d158
  • schneider/deepsleep
  • schneider/deepsleep2
  • schneider/deepsleep4
  • schneider/default-main
  • schneider/freertos-list-debug
  • schneider/fundamental-test
  • schneider/iaq-python
  • schneider/ir
  • schneider/max30001
  • schneider/max30001-epicaridum
  • schneider/max30001-pycardium
  • schneider/maxim-sdk-update
  • schneider/mp-exception-print
  • schneider/mp-for-old-bl
  • schneider/png
  • schneider/schleicher-test
  • schneider/sdk-0.2.1-11
  • schneider/sdk-0.2.1-7
  • schneider/sleep-display
  • schneider/spo2-playground
  • schneider/stream-locks
  • schneider/v1.17-changelog
  • bootloader-v1
  • release-1
  • v0.0
  • v1.0
  • v1.1
  • v1.10
  • v1.11
  • v1.12
  • v1.13
  • v1.14
  • v1.15
  • v1.16
  • v1.17
  • v1.18
  • v1.2
  • v1.3
  • v1.4
  • v1.5
  • v1.6
  • v1.7
  • v1.8
  • v1.9
82 results
Show changes

Commits on Source 2

Showing
with 3689 additions and 3 deletions
...@@ -6,7 +6,7 @@ strip = 'arm-none-eabi-strip' ...@@ -6,7 +6,7 @@ strip = 'arm-none-eabi-strip'
[properties] [properties]
c_args = ['-mthumb', '-mcpu=cortex-m4', '-mfloat-abi=hard', '-mfpu=fpv4-sp-d16', '-Wa,-mimplicit-it=thumb', '-ffunction-sections', '-fdata-sections', '-fsingle-precision-constant', '-fno-isolate-erroneous-paths-dereference'] c_args = ['-mthumb', '-mcpu=cortex-m4', '-mfloat-abi=hard', '-mfpu=fpv4-sp-d16', '-Wa,-mimplicit-it=thumb', '-ffunction-sections', '-fdata-sections', '-fsingle-precision-constant', '-fno-isolate-erroneous-paths-dereference']
c_link_args = ['-mthumb', '-mcpu=cortex-m4', '-mfloat-abi=hard', '-mfpu=fpv4-sp-d16', '-Wl,--start-group', '-lc', '-lnosys', '-Wl,--end-group', '--specs=nano.specs'] c_link_args = ['-mthumb', '-mcpu=cortex-m4', '-mfloat-abi=hard', '-mfpu=fpv4-sp-d16', '-Wl,--start-group', '-lc', '-lnosys', '-Wl,--end-group', '--specs=nano.specs', '../lib/vendor/Bosch/BSEC/algo/normal_version/bin/gcc/Cortex_M4F/libalgobsec.a']
target_defs = ['-DTARGET=32665', '-DTARGET_REV=0x4131', '-DBOARD_CARD10=1'] target_defs = ['-DTARGET=32665', '-DTARGET_REV=0x4131', '-DBOARD_CARD10=1']
......
...@@ -87,6 +87,18 @@ int main(void) ...@@ -87,6 +87,18 @@ int main(void)
abort(); abort();
} }
/* BSEC */
if (xTaskCreate(
vBSECTask,
(const char *)"BSEC",
configMINIMAL_STACK_SIZE * 4,
NULL,
tskIDLE_PRIORITY + 1,
NULL) != pdPASS) {
LOG_CRIT("startup", "Failed to create %s task!", "BSEC");
abort();
}
/* API */ /* API */
if (xTaskCreate( if (xTaskCreate(
vApiDispatcher, vApiDispatcher,
......
...@@ -75,7 +75,7 @@ elf = executable( ...@@ -75,7 +75,7 @@ elf = executable(
'support.c', 'support.c',
module_sources, module_sources,
l0der_sources, l0der_sources,
dependencies: [libcard10, max32665_startup_core0, maxusb, libff13], dependencies: [libcard10, max32665_startup_core0, maxusb, libff13, bsec],
link_with: [api_dispatcher_lib, freertos], link_with: [api_dispatcher_lib, freertos],
link_whole: [max32665_startup_core0_lib, board_card10_lib, newlib_heap_lib], link_whole: [max32665_startup_core0_lib, board_card10_lib, newlib_heap_lib],
include_directories: [freertos_includes], include_directories: [freertos_includes],
......
/* Adapted from bsec_iot_example.c and bsec_iot_ulp_plus_example.c */
#include "card10.h"
#include "bosch.h"
#include "epicardium.h"
#include "modules.h"
#include "modules/log.h"
#include "FreeRTOS.h"
#include "task.h"
#include "max32665.h"
#include "gcr_regs.h"
#include <stdio.h>
/**********************************************************************************************************************/
/* header files */
/**********************************************************************************************************************/
/* card10: ULP example specific: */
/* BSEC configuration files are available in the config/ folder of the release package. Please chose a configuration file with 3s maximum time between `bsec_sensor_control()` calls */
#include "bsec_integration.h"
/**********************************************************************************************************************/
/* functions */
/**********************************************************************************************************************/
/*!
* @brief Capture the system time in microseconds
*
* @return system_current_time current system timestamp in microseconds
*/
int64_t get_timestamp_us()
{
int tick = xTaskGetTickCount();
return tick * 1000;
}
/*!
* @brief Handling of the ready outputs
*
* @param[in] timestamp time in nanoseconds
* @param[in] iaq IAQ signal
* @param[in] iaq_accuracy accuracy of IAQ signal
* @param[in] temperature temperature signal
* @param[in] humidity humidity signal
* @param[in] pressure pressure signal
* @param[in] raw_temperature raw temperature signal
* @param[in] raw_humidity raw humidity signal
* @param[in] gas raw gas sensor signal
* @param[in] bsec_status value returned by the bsec_do_steps() call
*
* @return none
*/
void output_ready(
int64_t timestamp,
float iaq,
uint8_t iaq_accuracy,
float temperature,
float humidity,
float pressure,
float raw_temperature,
float raw_humidity,
float gas,
bsec_library_return_t bsec_status,
float static_iaq,
float co2_equivalent,
float breath_voc_equivalent
) {
return;
printf("bosch data time: %u, iaq: %u, iaq_a: %u, temp10: %u, hum10: %u, pres: %u, raw_temp10: %u, raw_hum10: %u, gas: %u, static_iaq: %u, co21e6: %u, breath_voc1e6: %u\n",
(unsigned int)(timestamp / 9e6),
(unsigned int)(iaq),
(unsigned int)(iaq_accuracy),
(unsigned int)(temperature * 10),
(unsigned int)(humidity * 10),
(unsigned int)(pressure),
(unsigned int)(raw_temperature * 10),
(unsigned int)(raw_humidity * 10),
(unsigned int)(gas),
(unsigned int)(static_iaq),
(unsigned int)(co2_equivalent * 1e6),
(unsigned int)(breath_voc_equivalent * 1e6));
}
static int bsec_load(char *path, uint8_t *buffer, uint32_t n_buffer)
{
uint32_t len = 0;
int fd, res;
printf("BSEC load %s %d\n", path, (int)n_buffer);
if ((fd = epic_file_open(path, "r")) < 0) {
printf("Open failed\n");
return 0;
}
uint32_t header;
if ((res = epic_file_read(fd, &header, sizeof(header))) !=
sizeof(header)) {
printf("Header failed\n");
goto done;
}
if (header > n_buffer) {
printf("Too large\n");
goto done;
}
if (epic_file_read(fd, buffer, header) != header) {
printf("Read failed\n");
goto done;
}
len = header;
printf("Success\n");
done:
epic_file_close(fd);
return len;
}
/*!
* @brief Load previous library state from non-volatile memory
*
* @param[in,out] state_buffer buffer to hold the loaded state string
* @param[in] n_buffer size of the allocated state buffer
*
* @return number of bytes copied to state_buffer
*/
uint32_t state_load(uint8_t *state_buffer, uint32_t n_buffer)
{
return bsec_load("bsec_iaq.state", state_buffer, n_buffer);
}
/*!
* @brief Save library state to non-volatile memory
*
* @param[in] state_buffer buffer holding the state to be stored
* @param[in] length length of the state string to be stored
*
* @return none
*/
void state_save(const uint8_t *state_buffer, uint32_t length)
{
int fd, res;
printf("BSEC state_save %d\n", (int)length);
if ((fd = epic_file_open("bsec_iaq.state", "w")) < 0) {
printf("Open failed\n");
return;
}
uint32_t header = length;
if ((res = epic_file_write(fd, &header, sizeof(header))) !=
sizeof(header)) {
printf("Header failed\n");
goto done;
}
if (epic_file_write(fd, state_buffer, header) != header) {
printf("Write failed\n");
goto done;
}
printf("Success\n");
done:
epic_file_close(fd);
}
/*!
* @brief Load library config from non-volatile memory
*
* @param[in,out] config_buffer buffer to hold the loaded state string
* @param[in] n_buffer size of the allocated state buffer
*
* @return number of bytes copied to config_buffer
*/
uint32_t config_load(uint8_t *config_buffer, uint32_t n_buffer)
{
return bsec_load("bsec_iaq.config", config_buffer, n_buffer);
}
#if 0
/* card10: ULP example specific: */
// Attach a button (or other) interrupt here to the ulp_plus_button_press() handler function to
// enable this interrupt to trigger a ULP plus
/*!
* @brief Interrupt handler for press of a ULP plus button
*
* @return none
*/
void ulp_plus_button_press()
{
/* We call bsec_update_subscription() in order to instruct BSEC to perform an extra measurement at the next
* possible time slot
*/
bsec_sensor_configuration_t requested_virtual_sensors[1];
uint8_t n_requested_virtual_sensors = 1;
bsec_sensor_configuration_t required_sensor_settings[BSEC_MAX_PHYSICAL_SENSOR];
uint8_t n_required_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR;
bsec_library_return_t status = BSEC_OK;
/* To trigger a ULP plus, we request the IAQ virtual sensor with a specific sample rate code */
requested_virtual_sensors[0].sensor_id = BSEC_OUTPUT_IAQ;
requested_virtual_sensors[0].sample_rate = BSEC_SAMPLE_RATE_ULP_MEASUREMENT_ON_DEMAND;
/* Call bsec_update_subscription() to enable/disable the requested virtual sensors */
status = bsec_update_subscription(requested_virtual_sensors, n_requested_virtual_sensors, required_sensor_settings,
&n_required_sensor_settings);
/* The status code would tell is if the request was accepted. It will be rejected if the sensor is not already in
* ULP mode, or if the time difference between requests is too short, for example. */
}
#endif
/*!
* @brief Main function which configures BSEC library and then reads and processes the data from sensor based
* on timer ticks
*
* @return result of the processing
*/
void vBSECTask(void *pvParameters)
{
return_values_init ret;
/* Call to the function which initializes the BSEC library */
#if 0
/* Switch on ultra_low-power mode and provide no temperature offset */
ret = bsec_iot_init(BSEC_SAMPLE_RATE_ULP, 0.0f, card10_bosch_i2c_write, card10_bosch_i2c_read, card10_bosch_delay, state_load, config_load);
#else
ret = bsec_iot_init(
BSEC_SAMPLE_RATE_LP,
0.0f,
card10_bosch_i2c_write,
card10_bosch_i2c_read,
card10_bosch_delay,
state_load,
config_load
);
#endif
if (ret.bme680_status) {
/* Could not intialize BME680 or BSEC library */
while (1)
;
} else if (ret.bsec_status) {
/* Could not intialize BSEC library */
while (1)
;
}
/* Call to endless loop function which reads and processes data based on sensor settings */
#if 0
/* State is saved every 10.000 samples, which means every 100 * 300 secs = 500 minutes */
bsec_iot_loop(sleep, get_timestamp_us, output_ready, state_save, 100);
#else
/* State is saved every 10.000 samples, which means every 10.000 * 3 secs = 500 minutes */
//bsec_iot_loop(card10_bosch_delay, get_timestamp_us, output_ready, state_save, 10000);
/* State is saved every 100 samples, which means every 1200 * 3 secs = 60 minutes */
bsec_iot_loop(
card10_bosch_delay,
get_timestamp_us,
output_ready,
state_save,
1200
);
#endif
while (1)
;
}
...@@ -9,5 +9,6 @@ module_sources = files( ...@@ -9,5 +9,6 @@ module_sources = files(
'stream.c', 'stream.c',
'vibra.c', 'vibra.c',
'light_sensor.c', 'light_sensor.c',
'rtc.c' 'rtc.c',
'bsec.c'
) )
...@@ -21,6 +21,8 @@ void vSerialTask(void *pvParameters); ...@@ -21,6 +21,8 @@ void vSerialTask(void *pvParameters);
#define PMIC_PRESS_POWEROFF 40 #define PMIC_PRESS_POWEROFF 40
void vPmicTask(void *pvParameters); void vPmicTask(void *pvParameters);
void vBSECTask(void *pvParameters);
// Forces an unlock of the display. Only to be used in epicardium // Forces an unlock of the display. Only to be used in epicardium
void disp_forcelock(); void disp_forcelock();
......
...@@ -2,6 +2,7 @@ subdir('./sdk/') ...@@ -2,6 +2,7 @@ subdir('./sdk/')
subdir('./vendor/Bosch/BHy1/') subdir('./vendor/Bosch/BHy1/')
subdir('./vendor/Bosch/BME680/') subdir('./vendor/Bosch/BME680/')
subdir('./vendor/Bosch/BSEC/')
subdir('./vendor/Bosch/BMA400/') subdir('./vendor/Bosch/BMA400/')
subdir('./vendor/Maxim/MAX77650/') subdir('./vendor/Maxim/MAX77650/')
subdir('./vendor/Maxim/MAX86150/') subdir('./vendor/Maxim/MAX86150/')
......
Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
Neither the name of the copyright holder nor the names of the
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
The information provided is believed to be accurate and reliable.
The copyright holder assumes no responsibility
for the consequences of use
of such information nor for any infringement of patents or
other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or
patent rights of the copyright holder.
\ No newline at end of file
# BME680 sensor API
## Introduction
This package contains the Bosch Sensortec's BME680 gas sensor API
The sensor driver package includes bme680.h, bme680.c and bme680_defs.h files
## Version
File | Version | Date
--------------|---------|-------------
bme680.c | 3.5.9 | 19 Jun 2018
bme680.h | 3.5.9 | 19 Jun 2018
bme680_defs.h | 3.5.9 | 19 Jun 2018
## Integration details
* Integrate bme680.h, bme680_defs.h and bme680.c file in to your project.
* Include the bme680.h file in your code like below.
``` c
#include "bme680.h"
```
## File information
* bme680_defs.h : This header file has the constants, macros and datatype declarations.
* bme680.h : This header file contains the declarations of the sensor driver APIs.
* bme680.c : This source file contains the definitions of the sensor driver APIs.
## Supported sensor interfaces
* SPI 4-wire
* I2C
## Usage guide
### Initializing the sensor
To initialize the sensor, you will first need to create a device structure. You
can do this by creating an instance of the structure bme680_dev. Then go on to
fill in the various parameters as shown below
#### Example for SPI 4-Wire
``` c
struct bme680_dev gas_sensor;
/* You may assign a chip select identifier to be handled later */
gas_sensor.dev_id = 0;
gas_sensor.intf = BME680_SPI_INTF;
gas_sensor.read = user_spi_read;
gas_sensor.write = user_spi_write;
gas_sensor.delay_ms = user_delay_ms;
/* amb_temp can be set to 25 prior to configuring the gas sensor
* or by performing a few temperature readings without operating the gas sensor.
*/
gas_sensor.amb_temp = 25;
int8_t rslt = BME680_OK;
rslt = bme680_init(&gas_sensor);
```
#### Example for I2C
``` c
struct bme680_dev gas_sensor;
gas_sensor.dev_id = BME680_I2C_ADDR_PRIMARY;
gas_sensor.intf = BME680_I2C_INTF;
gas_sensor.read = user_i2c_read;
gas_sensor.write = user_i2c_write;
gas_sensor.delay_ms = user_delay_ms;
/* amb_temp can be set to 25 prior to configuring the gas sensor
* or by performing a few temperature readings without operating the gas sensor.
*/
gas_sensor.amb_temp = 25;
int8_t rslt = BME680_OK;
rslt = bme680_init(&gas_sensor);
```
Regarding compensation functions for temperature, pressure, humidity and gas we have two implementations.
- Integer version
- floating point version
By default, Integer version is used in the API
If the user needs the floating point version, the user has to un-comment BME680_FLOAT_POINT_COMPENSATION macro
in bme680_defs.h file or to add it in the compiler flags.
### Configuring the sensor
#### Example for configuring the sensor in forced mode
``` c
uint8_t set_required_settings;
/* Set the temperature, pressure and humidity settings */
gas_sensor.tph_sett.os_hum = BME680_OS_2X;
gas_sensor.tph_sett.os_pres = BME680_OS_4X;
gas_sensor.tph_sett.os_temp = BME680_OS_8X;
gas_sensor.tph_sett.filter = BME680_FILTER_SIZE_3;
/* Set the remaining gas sensor settings and link the heating profile */
gas_sensor.gas_sett.run_gas = BME680_ENABLE_GAS_MEAS;
/* Create a ramp heat waveform in 3 steps */
gas_sensor.gas_sett.heatr_temp = 320; /* degree Celsius */
gas_sensor.gas_sett.heatr_dur = 150; /* milliseconds */
/* Select the power mode */
/* Must be set before writing the sensor configuration */
gas_sensor.power_mode = BME680_FORCED_MODE;
/* Set the required sensor settings needed */
set_required_settings = BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_FILTER_SEL
| BME680_GAS_SENSOR_SEL;
/* Set the desired sensor configuration */
rslt = bme680_set_sensor_settings(set_required_settings,&gas_sensor);
/* Set the power mode */
rslt = bme680_set_sensor_mode(&gas_sensor);
```
### Reading sensor data
#### Example for reading all sensor data
``` c
/* Get the total measurement duration so as to sleep or wait till the
* measurement is complete */
uint16_t meas_period;
bme680_get_profile_dur(&meas_period, &gas_sensor);
struct bme680_field_data data;
while(1)
{
user_delay_ms(meas_period); /* Delay till the measurement is ready */
rslt = bme680_get_sensor_data(&data, &gas_sensor);
printf("T: %.2f degC, P: %.2f hPa, H %.2f %%rH ", data.temperature / 100.0f,
data.pressure / 100.0f, data.humidity / 1000.0f );
/* Avoid using measurements from an unstable heating setup */
if(data.status & BME680_GASM_VALID_MSK)
printf(", G: %d ohms", data.gas_resistance);
printf("\r\n");
/* Trigger the next measurement if you would like to read data out continuously */
if (gas_sensor.power_mode == BME680_FORCED_MODE) {
rslt = bme680_set_sensor_mode(&gas_sensor);
}
}
```
### Templates for function pointers
``` c
void user_delay_ms(uint32_t period)
{
/*
* Return control or wait,
* for a period amount of milliseconds
*/
}
int8_t user_spi_read(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len)
{
int8_t rslt = 0; /* Return 0 for Success, non-zero for failure */
/*
* The parameter dev_id can be used as a variable to select which Chip Select pin has
* to be set low to activate the relevant device on the SPI bus
*/
/*
* Data on the bus should be like
* |----------------+---------------------+-------------|
* | MOSI | MISO | Chip Select |
* |----------------+---------------------|-------------|
* | (don't care) | (don't care) | HIGH |
* | (reg_addr) | (don't care) | LOW |
* | (don't care) | (reg_data[0]) | LOW |
* | (....) | (....) | LOW |
* | (don't care) | (reg_data[len - 1]) | LOW |
* | (don't care) | (don't care) | HIGH |
* |----------------+---------------------|-------------|
*/
return rslt;
}
int8_t user_spi_write(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len)
{
int8_t rslt = 0; /* Return 0 for Success, non-zero for failure */
/*
* The parameter dev_id can be used as a variable to select which Chip Select pin has
* to be set low to activate the relevant device on the SPI bus
*/
/*
* Data on the bus should be like
* |---------------------+--------------+-------------|
* | MOSI | MISO | Chip Select |
* |---------------------+--------------|-------------|
* | (don't care) | (don't care) | HIGH |
* | (reg_addr) | (don't care) | LOW |
* | (reg_data[0]) | (don't care) | LOW |
* | (....) | (....) | LOW |
* | (reg_data[len - 1]) | (don't care) | LOW |
* | (don't care) | (don't care) | HIGH |
* |---------------------+--------------|-------------|
*/
return rslt;
}
int8_t user_i2c_read(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len)
{
int8_t rslt = 0; /* Return 0 for Success, non-zero for failure */
/*
* The parameter dev_id can be used as a variable to store the I2C address of the device
*/
/*
* Data on the bus should be like
* |------------+---------------------|
* | I2C action | Data |
* |------------+---------------------|
* | Start | - |
* | Write | (reg_addr) |
* | Stop | - |
* | Start | - |
* | Read | (reg_data[0]) |
* | Read | (....) |
* | Read | (reg_data[len - 1]) |
* | Stop | - |
* |------------+---------------------|
*/
return rslt;
}
int8_t user_i2c_write(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len)
{
int8_t rslt = 0; /* Return 0 for Success, non-zero for failure */
/*
* The parameter dev_id can be used as a variable to store the I2C address of the device
*/
/*
* Data on the bus should be like
* |------------+---------------------|
* | I2C action | Data |
* |------------+---------------------|
* | Start | - |
* | Write | (reg_addr) |
* | Write | (reg_data[0]) |
* | Write | (....) |
* | Write | (reg_data[len - 1]) |
* | Stop | - |
* |------------+---------------------|
*/
return rslt;
}
```
## Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
\ No newline at end of file
/**\mainpage
* Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of the copyright holder nor the names of the
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
* OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
* The information provided is believed to be accurate and reliable.
* The copyright holder assumes no responsibility
* for the consequences of use
* of such information nor for any infringement of patents or
* other rights of third parties which may result from its use.
* No license is granted by implication or otherwise under any patent or
* patent rights of the copyright holder.
*
* File bme680.c
* @date 19 Jun 2018
* @version 3.5.9
*
*/
/*! @file bme680.c
@brief Sensor driver for BME680 sensor */
#include "bme680.h"
/*!
* @brief This internal API is used to read the calibrated data from the sensor.
*
* This function is used to retrieve the calibration
* data from the image registers of the sensor.
*
* @note Registers 89h to A1h for calibration data 1 to 24
* from bit 0 to 7
* @note Registers E1h to F0h for calibration data 25 to 40
* from bit 0 to 7
* @param[in] dev :Structure instance of bme680_dev.
*
* @return Result of API execution status.
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
static int8_t get_calib_data(struct bme680_dev *dev);
/*!
* @brief This internal API is used to set the gas configuration of the sensor.
*
* @param[in] dev :Structure instance of bme680_dev.
*
* @return Result of API execution status.
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
static int8_t set_gas_config(struct bme680_dev *dev);
/*!
* @brief This internal API is used to get the gas configuration of the sensor.
* @note heatr_temp and heatr_dur values are currently register data
* and not the actual values set
*
* @param[in] dev :Structure instance of bme680_dev.
*
* @return Result of API execution status.
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
static int8_t get_gas_config(struct bme680_dev *dev);
/*!
* @brief This internal API is used to calculate the Heat duration value.
*
* @param[in] dur :Value of the duration to be shared.
*
* @return uint8_t threshold duration after calculation.
*/
static uint8_t calc_heater_dur(uint16_t dur);
#ifndef BME680_FLOAT_POINT_COMPENSATION
/*!
* @brief This internal API is used to calculate the temperature value.
*
* @param[in] dev :Structure instance of bme680_dev.
* @param[in] temp_adc :Contains the temperature ADC value .
*
* @return uint32_t calculated temperature.
*/
static int16_t calc_temperature(uint32_t temp_adc, struct bme680_dev *dev);
/*!
* @brief This internal API is used to calculate the pressure value.
*
* @param[in] dev :Structure instance of bme680_dev.
* @param[in] pres_adc :Contains the pressure ADC value .
*
* @return uint32_t calculated pressure.
*/
static uint32_t calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev);
/*!
* @brief This internal API is used to calculate the humidity value.
*
* @param[in] dev :Structure instance of bme680_dev.
* @param[in] hum_adc :Contains the humidity ADC value.
*
* @return uint32_t calculated humidity.
*/
static uint32_t calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev);
/*!
* @brief This internal API is used to calculate the Gas Resistance value.
*
* @param[in] dev :Structure instance of bme680_dev.
* @param[in] gas_res_adc :Contains the Gas Resistance ADC value.
* @param[in] gas_range :Contains the range of gas values.
*
* @return uint32_t calculated gas resistance.
*/
static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev);
/*!
* @brief This internal API is used to calculate the Heat Resistance value.
*
* @param[in] dev : Structure instance of bme680_dev
* @param[in] temp : Contains the target temperature value.
*
* @return uint8_t calculated heater resistance.
*/
static uint8_t calc_heater_res(uint16_t temp, const struct bme680_dev *dev);
#else
/*!
* @brief This internal API is used to calculate the
* temperature value value in float format
*
* @param[in] dev :Structure instance of bme680_dev.
* @param[in] temp_adc :Contains the temperature ADC value .
*
* @return Calculated temperature in float
*/
static float calc_temperature(uint32_t temp_adc, struct bme680_dev *dev);
/*!
* @brief This internal API is used to calculate the
* pressure value value in float format
*
* @param[in] dev :Structure instance of bme680_dev.
* @param[in] pres_adc :Contains the pressure ADC value .
*
* @return Calculated pressure in float.
*/
static float calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev);
/*!
* @brief This internal API is used to calculate the
* humidity value value in float format
*
* @param[in] dev :Structure instance of bme680_dev.
* @param[in] hum_adc :Contains the humidity ADC value.
*
* @return Calculated humidity in float.
*/
static float calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev);
/*!
* @brief This internal API is used to calculate the
* gas resistance value value in float format
*
* @param[in] dev :Structure instance of bme680_dev.
* @param[in] gas_res_adc :Contains the Gas Resistance ADC value.
* @param[in] gas_range :Contains the range of gas values.
*
* @return Calculated gas resistance in float.
*/
static float calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev);
/*!
* @brief This internal API is used to calculate the
* heater resistance value in float format
*
* @param[in] temp : Contains the target temperature value.
* @param[in] dev : Structure instance of bme680_dev.
*
* @return Calculated heater resistance in float.
*/
static float calc_heater_res(uint16_t temp, const struct bme680_dev *dev);
#endif
/*!
* @brief This internal API is used to calculate the field data of sensor.
*
* @param[out] data :Structure instance to hold the data
* @param[in] dev :Structure instance of bme680_dev.
*
* @return int8_t result of the field data from sensor.
*/
static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev *dev);
/*!
* @brief This internal API is used to set the memory page
* based on register address.
*
* The value of memory page
* value | Description
* --------|--------------
* 0 | BME680_PAGE0_SPI
* 1 | BME680_PAGE1_SPI
*
* @param[in] dev :Structure instance of bme680_dev.
* @param[in] reg_addr :Contains the register address array.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
static int8_t set_mem_page(uint8_t reg_addr, struct bme680_dev *dev);
/*!
* @brief This internal API is used to get the memory page based
* on register address.
*
* The value of memory page
* value | Description
* --------|--------------
* 0 | BME680_PAGE0_SPI
* 1 | BME680_PAGE1_SPI
*
* @param[in] dev :Structure instance of bme680_dev.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
static int8_t get_mem_page(struct bme680_dev *dev);
/*!
* @brief This internal API is used to validate the device pointer for
* null conditions.
*
* @param[in] dev :Structure instance of bme680_dev.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
static int8_t null_ptr_check(const struct bme680_dev *dev);
/*!
* @brief This internal API is used to check the boundary
* conditions.
*
* @param[in] value :pointer to the value.
* @param[in] min :minimum value.
* @param[in] max :maximum value.
* @param[in] dev :Structure instance of bme680_dev.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
static int8_t boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bme680_dev *dev);
/****************** Global Function Definitions *******************************/
/*!
*@brief This API is the entry point.
*It reads the chip-id and calibration data from the sensor.
*/
int8_t bme680_init(struct bme680_dev *dev)
{
int8_t rslt;
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
/* Soft reset to restore it to default values*/
rslt = bme680_soft_reset(dev);
if (rslt == BME680_OK) {
rslt = bme680_get_regs(BME680_CHIP_ID_ADDR, &dev->chip_id, 1, dev);
if (rslt == BME680_OK) {
if (dev->chip_id == BME680_CHIP_ID) {
/* Get the Calibration data */
rslt = get_calib_data(dev);
} else {
rslt = BME680_E_DEV_NOT_FOUND;
}
}
}
}
return rslt;
}
/*!
* @brief This API reads the data from the given register address of the sensor.
*/
int8_t bme680_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len, struct bme680_dev *dev)
{
int8_t rslt;
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
if (dev->intf == BME680_SPI_INTF) {
/* Set the memory page */
rslt = set_mem_page(reg_addr, dev);
if (rslt == BME680_OK)
reg_addr = reg_addr | BME680_SPI_RD_MSK;
}
dev->com_rslt = dev->read(dev->dev_id, reg_addr, reg_data, len);
if (dev->com_rslt != 0)
rslt = BME680_E_COM_FAIL;
}
return rslt;
}
/*!
* @brief This API writes the given data to the register address
* of the sensor.
*/
int8_t bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len, struct bme680_dev *dev)
{
int8_t rslt;
/* Length of the temporary buffer is 2*(length of register)*/
uint8_t tmp_buff[BME680_TMP_BUFFER_LENGTH] = { 0 };
uint16_t index;
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
if ((len > 0) && (len < BME680_TMP_BUFFER_LENGTH / 2)) {
/* Interleave the 2 arrays */
for (index = 0; index < len; index++) {
if (dev->intf == BME680_SPI_INTF) {
/* Set the memory page */
rslt = set_mem_page(reg_addr[index], dev);
tmp_buff[(2 * index)] = reg_addr[index] & BME680_SPI_WR_MSK;
} else {
tmp_buff[(2 * index)] = reg_addr[index];
}
tmp_buff[(2 * index) + 1] = reg_data[index];
}
/* Write the interleaved array */
if (rslt == BME680_OK) {
dev->com_rslt = dev->write(dev->dev_id, tmp_buff[0], &tmp_buff[1], (2 * len) - 1);
if (dev->com_rslt != 0)
rslt = BME680_E_COM_FAIL;
}
} else {
rslt = BME680_E_INVALID_LENGTH;
}
}
return rslt;
}
/*!
* @brief This API performs the soft reset of the sensor.
*/
int8_t bme680_soft_reset(struct bme680_dev *dev)
{
int8_t rslt;
uint8_t reg_addr = BME680_SOFT_RESET_ADDR;
/* 0xb6 is the soft reset command */
uint8_t soft_rst_cmd = BME680_SOFT_RESET_CMD;
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
if (dev->intf == BME680_SPI_INTF)
rslt = get_mem_page(dev);
/* Reset the device */
if (rslt == BME680_OK) {
rslt = bme680_set_regs(&reg_addr, &soft_rst_cmd, 1, dev);
/* Wait for 5ms */
dev->delay_ms(BME680_RESET_PERIOD);
if (rslt == BME680_OK) {
/* After reset get the memory page */
if (dev->intf == BME680_SPI_INTF)
rslt = get_mem_page(dev);
}
}
}
return rslt;
}
/*!
* @brief This API is used to set the oversampling, filter and T,P,H, gas selection
* settings in the sensor.
*/
int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev)
{
int8_t rslt;
uint8_t reg_addr;
uint8_t data = 0;
uint8_t count = 0;
uint8_t reg_array[BME680_REG_BUFFER_LENGTH] = { 0 };
uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 };
uint8_t intended_power_mode = dev->power_mode; /* Save intended power mode */
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
if (desired_settings & BME680_GAS_MEAS_SEL)
rslt = set_gas_config(dev);
dev->power_mode = BME680_SLEEP_MODE;
if (rslt == BME680_OK)
rslt = bme680_set_sensor_mode(dev);
/* Selecting the filter */
if (desired_settings & BME680_FILTER_SEL) {
rslt = boundary_check(&dev->tph_sett.filter, BME680_FILTER_SIZE_0, BME680_FILTER_SIZE_127, dev);
reg_addr = BME680_CONF_ODR_FILT_ADDR;
if (rslt == BME680_OK)
rslt = bme680_get_regs(reg_addr, &data, 1, dev);
if (desired_settings & BME680_FILTER_SEL)
data = BME680_SET_BITS(data, BME680_FILTER, dev->tph_sett.filter);
reg_array[count] = reg_addr; /* Append configuration */
data_array[count] = data;
count++;
}
/* Selecting heater control for the sensor */
if (desired_settings & BME680_HCNTRL_SEL) {
rslt = boundary_check(&dev->gas_sett.heatr_ctrl, BME680_ENABLE_HEATER,
BME680_DISABLE_HEATER, dev);
reg_addr = BME680_CONF_HEAT_CTRL_ADDR;
if (rslt == BME680_OK)
rslt = bme680_get_regs(reg_addr, &data, 1, dev);
data = BME680_SET_BITS_POS_0(data, BME680_HCTRL, dev->gas_sett.heatr_ctrl);
reg_array[count] = reg_addr; /* Append configuration */
data_array[count] = data;
count++;
}
/* Selecting heater T,P oversampling for the sensor */
if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) {
rslt = boundary_check(&dev->tph_sett.os_temp, BME680_OS_NONE, BME680_OS_16X, dev);
reg_addr = BME680_CONF_T_P_MODE_ADDR;
if (rslt == BME680_OK)
rslt = bme680_get_regs(reg_addr, &data, 1, dev);
if (desired_settings & BME680_OST_SEL)
data = BME680_SET_BITS(data, BME680_OST, dev->tph_sett.os_temp);
if (desired_settings & BME680_OSP_SEL)
data = BME680_SET_BITS(data, BME680_OSP, dev->tph_sett.os_pres);
reg_array[count] = reg_addr;
data_array[count] = data;
count++;
}
/* Selecting humidity oversampling for the sensor */
if (desired_settings & BME680_OSH_SEL) {
rslt = boundary_check(&dev->tph_sett.os_hum, BME680_OS_NONE, BME680_OS_16X, dev);
reg_addr = BME680_CONF_OS_H_ADDR;
if (rslt == BME680_OK)
rslt = bme680_get_regs(reg_addr, &data, 1, dev);
data = BME680_SET_BITS_POS_0(data, BME680_OSH, dev->tph_sett.os_hum);
reg_array[count] = reg_addr; /* Append configuration */
data_array[count] = data;
count++;
}
/* Selecting the runGas and NB conversion settings for the sensor */
if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) {
rslt = boundary_check(&dev->gas_sett.run_gas, BME680_RUN_GAS_DISABLE,
BME680_RUN_GAS_ENABLE, dev);
if (rslt == BME680_OK) {
/* Validate boundary conditions */
rslt = boundary_check(&dev->gas_sett.nb_conv, BME680_NBCONV_MIN,
BME680_NBCONV_MAX, dev);
}
reg_addr = BME680_CONF_ODR_RUN_GAS_NBC_ADDR;
if (rslt == BME680_OK)
rslt = bme680_get_regs(reg_addr, &data, 1, dev);
if (desired_settings & BME680_RUN_GAS_SEL)
data = BME680_SET_BITS(data, BME680_RUN_GAS, dev->gas_sett.run_gas);
if (desired_settings & BME680_NBCONV_SEL)
data = BME680_SET_BITS_POS_0(data, BME680_NBCONV, dev->gas_sett.nb_conv);
reg_array[count] = reg_addr; /* Append configuration */
data_array[count] = data;
count++;
}
if (rslt == BME680_OK)
rslt = bme680_set_regs(reg_array, data_array, count, dev);
/* Restore previous intended power mode */
dev->power_mode = intended_power_mode;
}
return rslt;
}
/*!
* @brief This API is used to get the oversampling, filter and T,P,H, gas selection
* settings in the sensor.
*/
int8_t bme680_get_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev)
{
int8_t rslt;
/* starting address of the register array for burst read*/
uint8_t reg_addr = BME680_CONF_HEAT_CTRL_ADDR;
uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 };
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
rslt = bme680_get_regs(reg_addr, data_array, BME680_REG_BUFFER_LENGTH, dev);
if (rslt == BME680_OK) {
if (desired_settings & BME680_GAS_MEAS_SEL)
rslt = get_gas_config(dev);
/* get the T,P,H ,Filter,ODR settings here */
if (desired_settings & BME680_FILTER_SEL)
dev->tph_sett.filter = BME680_GET_BITS(data_array[BME680_REG_FILTER_INDEX],
BME680_FILTER);
if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) {
dev->tph_sett.os_temp = BME680_GET_BITS(data_array[BME680_REG_TEMP_INDEX], BME680_OST);
dev->tph_sett.os_pres = BME680_GET_BITS(data_array[BME680_REG_PRES_INDEX], BME680_OSP);
}
if (desired_settings & BME680_OSH_SEL)
dev->tph_sett.os_hum = BME680_GET_BITS_POS_0(data_array[BME680_REG_HUM_INDEX],
BME680_OSH);
/* get the gas related settings */
if (desired_settings & BME680_HCNTRL_SEL)
dev->gas_sett.heatr_ctrl = BME680_GET_BITS_POS_0(data_array[BME680_REG_HCTRL_INDEX],
BME680_HCTRL);
if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) {
dev->gas_sett.nb_conv = BME680_GET_BITS_POS_0(data_array[BME680_REG_NBCONV_INDEX],
BME680_NBCONV);
dev->gas_sett.run_gas = BME680_GET_BITS(data_array[BME680_REG_RUN_GAS_INDEX],
BME680_RUN_GAS);
}
}
} else {
rslt = BME680_E_NULL_PTR;
}
return rslt;
}
/*!
* @brief This API is used to set the power mode of the sensor.
*/
int8_t bme680_set_sensor_mode(struct bme680_dev *dev)
{
int8_t rslt;
uint8_t tmp_pow_mode;
uint8_t pow_mode = 0;
uint8_t reg_addr = BME680_CONF_T_P_MODE_ADDR;
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
/* Call repeatedly until in sleep */
do {
rslt = bme680_get_regs(BME680_CONF_T_P_MODE_ADDR, &tmp_pow_mode, 1, dev);
if (rslt == BME680_OK) {
/* Put to sleep before changing mode */
pow_mode = (tmp_pow_mode & BME680_MODE_MSK);
if (pow_mode != BME680_SLEEP_MODE) {
tmp_pow_mode = tmp_pow_mode & (~BME680_MODE_MSK); /* Set to sleep */
rslt = bme680_set_regs(&reg_addr, &tmp_pow_mode, 1, dev);
dev->delay_ms(BME680_POLL_PERIOD_MS);
}
}
} while (pow_mode != BME680_SLEEP_MODE);
/* Already in sleep */
if (dev->power_mode != BME680_SLEEP_MODE) {
tmp_pow_mode = (tmp_pow_mode & ~BME680_MODE_MSK) | (dev->power_mode & BME680_MODE_MSK);
if (rslt == BME680_OK)
rslt = bme680_set_regs(&reg_addr, &tmp_pow_mode, 1, dev);
}
}
return rslt;
}
/*!
* @brief This API is used to get the power mode of the sensor.
*/
int8_t bme680_get_sensor_mode(struct bme680_dev *dev)
{
int8_t rslt;
uint8_t mode;
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
rslt = bme680_get_regs(BME680_CONF_T_P_MODE_ADDR, &mode, 1, dev);
/* Masking the other register bit info*/
dev->power_mode = mode & BME680_MODE_MSK;
}
return rslt;
}
/*!
* @brief This API is used to set the profile duration of the sensor.
*/
void bme680_set_profile_dur(uint16_t duration, struct bme680_dev *dev)
{
uint32_t tph_dur; /* Calculate in us */
uint32_t meas_cycles;
uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16};
meas_cycles = os_to_meas_cycles[dev->tph_sett.os_temp];
meas_cycles += os_to_meas_cycles[dev->tph_sett.os_pres];
meas_cycles += os_to_meas_cycles[dev->tph_sett.os_hum];
/* TPH measurement duration */
tph_dur = meas_cycles * UINT32_C(1963);
tph_dur += UINT32_C(477 * 4); /* TPH switching duration */
tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */
tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/
tph_dur /= UINT32_C(1000); /* Convert to ms */
tph_dur += UINT32_C(1); /* Wake up duration of 1ms */
/* The remaining time should be used for heating */
dev->gas_sett.heatr_dur = duration - (uint16_t) tph_dur;
}
/*!
* @brief This API is used to get the profile duration of the sensor.
*/
void bme680_get_profile_dur(uint16_t *duration, const struct bme680_dev *dev)
{
uint32_t tph_dur; /* Calculate in us */
uint32_t meas_cycles;
uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16};
meas_cycles = os_to_meas_cycles[dev->tph_sett.os_temp];
meas_cycles += os_to_meas_cycles[dev->tph_sett.os_pres];
meas_cycles += os_to_meas_cycles[dev->tph_sett.os_hum];
/* TPH measurement duration */
tph_dur = meas_cycles * UINT32_C(1963);
tph_dur += UINT32_C(477 * 4); /* TPH switching duration */
tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */
tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/
tph_dur /= UINT32_C(1000); /* Convert to ms */
tph_dur += UINT32_C(1); /* Wake up duration of 1ms */
*duration = (uint16_t) tph_dur;
/* Get the gas duration only when the run gas is enabled */
if (dev->gas_sett.run_gas) {
/* The remaining time should be used for heating */
*duration += dev->gas_sett.heatr_dur;
}
}
/*!
* @brief This API reads the pressure, temperature and humidity and gas data
* from the sensor, compensates the data and store it in the bme680_data
* structure instance passed by the user.
*/
int8_t bme680_get_sensor_data(struct bme680_field_data *data, struct bme680_dev *dev)
{
int8_t rslt;
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
/* Reading the sensor data in forced mode only */
rslt = read_field_data(data, dev);
if (rslt == BME680_OK) {
if (data->status & BME680_NEW_DATA_MSK)
dev->new_fields = 1;
else
dev->new_fields = 0;
}
}
return rslt;
}
/*!
* @brief This internal API is used to read the calibrated data from the sensor.
*/
static int8_t get_calib_data(struct bme680_dev *dev)
{
int8_t rslt;
uint8_t coeff_array[BME680_COEFF_SIZE] = { 0 };
uint8_t temp_var = 0; /* Temporary variable */
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
rslt = bme680_get_regs(BME680_COEFF_ADDR1, coeff_array, BME680_COEFF_ADDR1_LEN, dev);
/* Append the second half in the same array */
if (rslt == BME680_OK)
rslt = bme680_get_regs(BME680_COEFF_ADDR2, &coeff_array[BME680_COEFF_ADDR1_LEN]
, BME680_COEFF_ADDR2_LEN, dev);
/* Temperature related coefficients */
dev->calib.par_t1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T1_MSB_REG],
coeff_array[BME680_T1_LSB_REG]));
dev->calib.par_t2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T2_MSB_REG],
coeff_array[BME680_T2_LSB_REG]));
dev->calib.par_t3 = (int8_t) (coeff_array[BME680_T3_REG]);
/* Pressure related coefficients */
dev->calib.par_p1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P1_MSB_REG],
coeff_array[BME680_P1_LSB_REG]));
dev->calib.par_p2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P2_MSB_REG],
coeff_array[BME680_P2_LSB_REG]));
dev->calib.par_p3 = (int8_t) coeff_array[BME680_P3_REG];
dev->calib.par_p4 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P4_MSB_REG],
coeff_array[BME680_P4_LSB_REG]));
dev->calib.par_p5 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P5_MSB_REG],
coeff_array[BME680_P5_LSB_REG]));
dev->calib.par_p6 = (int8_t) (coeff_array[BME680_P6_REG]);
dev->calib.par_p7 = (int8_t) (coeff_array[BME680_P7_REG]);
dev->calib.par_p8 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P8_MSB_REG],
coeff_array[BME680_P8_LSB_REG]));
dev->calib.par_p9 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P9_MSB_REG],
coeff_array[BME680_P9_LSB_REG]));
dev->calib.par_p10 = (uint8_t) (coeff_array[BME680_P10_REG]);
/* Humidity related coefficients */
dev->calib.par_h1 = (uint16_t) (((uint16_t) coeff_array[BME680_H1_MSB_REG] << BME680_HUM_REG_SHIFT_VAL)
| (coeff_array[BME680_H1_LSB_REG] & BME680_BIT_H1_DATA_MSK));
dev->calib.par_h2 = (uint16_t) (((uint16_t) coeff_array[BME680_H2_MSB_REG] << BME680_HUM_REG_SHIFT_VAL)
| ((coeff_array[BME680_H2_LSB_REG]) >> BME680_HUM_REG_SHIFT_VAL));
dev->calib.par_h3 = (int8_t) coeff_array[BME680_H3_REG];
dev->calib.par_h4 = (int8_t) coeff_array[BME680_H4_REG];
dev->calib.par_h5 = (int8_t) coeff_array[BME680_H5_REG];
dev->calib.par_h6 = (uint8_t) coeff_array[BME680_H6_REG];
dev->calib.par_h7 = (int8_t) coeff_array[BME680_H7_REG];
/* Gas heater related coefficients */
dev->calib.par_gh1 = (int8_t) coeff_array[BME680_GH1_REG];
dev->calib.par_gh2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_GH2_MSB_REG],
coeff_array[BME680_GH2_LSB_REG]));
dev->calib.par_gh3 = (int8_t) coeff_array[BME680_GH3_REG];
/* Other coefficients */
if (rslt == BME680_OK) {
rslt = bme680_get_regs(BME680_ADDR_RES_HEAT_RANGE_ADDR, &temp_var, 1, dev);
dev->calib.res_heat_range = ((temp_var & BME680_RHRANGE_MSK) / 16);
if (rslt == BME680_OK) {
rslt = bme680_get_regs(BME680_ADDR_RES_HEAT_VAL_ADDR, &temp_var, 1, dev);
dev->calib.res_heat_val = (int8_t) temp_var;
if (rslt == BME680_OK)
rslt = bme680_get_regs(BME680_ADDR_RANGE_SW_ERR_ADDR, &temp_var, 1, dev);
}
}
dev->calib.range_sw_err = ((int8_t) temp_var & (int8_t) BME680_RSERROR_MSK) / 16;
}
return rslt;
}
/*!
* @brief This internal API is used to set the gas configuration of the sensor.
*/
static int8_t set_gas_config(struct bme680_dev *dev)
{
int8_t rslt;
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
uint8_t reg_addr[2] = {0};
uint8_t reg_data[2] = {0};
if (dev->power_mode == BME680_FORCED_MODE) {
reg_addr[0] = BME680_RES_HEAT0_ADDR;
reg_data[0] = calc_heater_res(dev->gas_sett.heatr_temp, dev);
reg_addr[1] = BME680_GAS_WAIT0_ADDR;
reg_data[1] = calc_heater_dur(dev->gas_sett.heatr_dur);
dev->gas_sett.nb_conv = 0;
} else {
rslt = BME680_W_DEFINE_PWR_MODE;
}
if (rslt == BME680_OK)
rslt = bme680_set_regs(reg_addr, reg_data, 2, dev);
}
return rslt;
}
/*!
* @brief This internal API is used to get the gas configuration of the sensor.
* @note heatr_temp and heatr_dur values are currently register data
* and not the actual values set
*/
static int8_t get_gas_config(struct bme680_dev *dev)
{
int8_t rslt;
/* starting address of the register array for burst read*/
uint8_t reg_addr1 = BME680_ADDR_SENS_CONF_START;
uint8_t reg_addr2 = BME680_ADDR_GAS_CONF_START;
uint8_t reg_data = 0;
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
if (BME680_SPI_INTF == dev->intf) {
/* Memory page switch the SPI address*/
rslt = set_mem_page(reg_addr1, dev);
}
if (rslt == BME680_OK) {
rslt = bme680_get_regs(reg_addr1, &reg_data, 1, dev);
if (rslt == BME680_OK) {
dev->gas_sett.heatr_temp = reg_data;
rslt = bme680_get_regs(reg_addr2, &reg_data, 1, dev);
if (rslt == BME680_OK) {
/* Heating duration register value */
dev->gas_sett.heatr_dur = reg_data;
}
}
}
}
return rslt;
}
#ifndef BME680_FLOAT_POINT_COMPENSATION
/*!
* @brief This internal API is used to calculate the temperature value.
*/
static int16_t calc_temperature(uint32_t temp_adc, struct bme680_dev *dev)
{
int64_t var1;
int64_t var2;
int64_t var3;
int16_t calc_temp;
var1 = ((int32_t) temp_adc >> 3) - ((int32_t) dev->calib.par_t1 << 1);
var2 = (var1 * (int32_t) dev->calib.par_t2) >> 11;
var3 = ((var1 >> 1) * (var1 >> 1)) >> 12;
var3 = ((var3) * ((int32_t) dev->calib.par_t3 << 4)) >> 14;
dev->calib.t_fine = (int32_t) (var2 + var3);
calc_temp = (int16_t) (((dev->calib.t_fine * 5) + 128) >> 8);
return calc_temp;
}
/*!
* @brief This internal API is used to calculate the pressure value.
*/
static uint32_t calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev)
{
int32_t var1;
int32_t var2;
int32_t var3;
int32_t pressure_comp;
var1 = (((int32_t)dev->calib.t_fine) >> 1) - 64000;
var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) *
(int32_t)dev->calib.par_p6) >> 2;
var2 = var2 + ((var1 * (int32_t)dev->calib.par_p5) << 1);
var2 = (var2 >> 2) + ((int32_t)dev->calib.par_p4 << 16);
var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) *
((int32_t)dev->calib.par_p3 << 5)) >> 3) +
(((int32_t)dev->calib.par_p2 * var1) >> 1);
var1 = var1 >> 18;
var1 = ((32768 + var1) * (int32_t)dev->calib.par_p1) >> 15;
pressure_comp = 1048576 - pres_adc;
pressure_comp = (int32_t)((pressure_comp - (var2 >> 12)) * ((uint32_t)3125));
if (pressure_comp >= BME680_MAX_OVERFLOW_VAL)
pressure_comp = ((pressure_comp / var1) << 1);
else
pressure_comp = ((pressure_comp << 1) / var1);
var1 = ((int32_t)dev->calib.par_p9 * (int32_t)(((pressure_comp >> 3) *
(pressure_comp >> 3)) >> 13)) >> 12;
var2 = ((int32_t)(pressure_comp >> 2) *
(int32_t)dev->calib.par_p8) >> 13;
var3 = ((int32_t)(pressure_comp >> 8) * (int32_t)(pressure_comp >> 8) *
(int32_t)(pressure_comp >> 8) *
(int32_t)dev->calib.par_p10) >> 17;
pressure_comp = (int32_t)(pressure_comp) + ((var1 + var2 + var3 +
((int32_t)dev->calib.par_p7 << 7)) >> 4);
return (uint32_t)pressure_comp;
}
/*!
* @brief This internal API is used to calculate the humidity value.
*/
static uint32_t calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev)
{
int32_t var1;
int32_t var2;
int32_t var3;
int32_t var4;
int32_t var5;
int32_t var6;
int32_t temp_scaled;
int32_t calc_hum;
temp_scaled = (((int32_t) dev->calib.t_fine * 5) + 128) >> 8;
var1 = (int32_t) (hum_adc - ((int32_t) ((int32_t) dev->calib.par_h1 * 16)))
- (((temp_scaled * (int32_t) dev->calib.par_h3) / ((int32_t) 100)) >> 1);
var2 = ((int32_t) dev->calib.par_h2
* (((temp_scaled * (int32_t) dev->calib.par_h4) / ((int32_t) 100))
+ (((temp_scaled * ((temp_scaled * (int32_t) dev->calib.par_h5) / ((int32_t) 100))) >> 6)
/ ((int32_t) 100)) + (int32_t) (1 << 14))) >> 10;
var3 = var1 * var2;
var4 = (int32_t) dev->calib.par_h6 << 7;
var4 = ((var4) + ((temp_scaled * (int32_t) dev->calib.par_h7) / ((int32_t) 100))) >> 4;
var5 = ((var3 >> 14) * (var3 >> 14)) >> 10;
var6 = (var4 * var5) >> 1;
calc_hum = (((var3 + var6) >> 10) * ((int32_t) 1000)) >> 12;
if (calc_hum > 100000) /* Cap at 100%rH */
calc_hum = 100000;
else if (calc_hum < 0)
calc_hum = 0;
return (uint32_t) calc_hum;
}
/*!
* @brief This internal API is used to calculate the Gas Resistance value.
*/
static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev)
{
int64_t var1;
uint64_t var2;
int64_t var3;
uint32_t calc_gas_res;
/**Look up table 1 for the possible gas range values */
uint32_t lookupTable1[16] = { UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647),
UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2130303777),
UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2143188679), UINT32_C(2136746228),
UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2147483647) };
/**Look up table 2 for the possible gas range values */
uint32_t lookupTable2[16] = { UINT32_C(4096000000), UINT32_C(2048000000), UINT32_C(1024000000), UINT32_C(512000000),
UINT32_C(255744255), UINT32_C(127110228), UINT32_C(64000000), UINT32_C(32258064), UINT32_C(16016016),
UINT32_C(8000000), UINT32_C(4000000), UINT32_C(2000000), UINT32_C(1000000), UINT32_C(500000),
UINT32_C(250000), UINT32_C(125000) };
var1 = (int64_t) ((1340 + (5 * (int64_t) dev->calib.range_sw_err)) *
((int64_t) lookupTable1[gas_range])) >> 16;
var2 = (((int64_t) ((int64_t) gas_res_adc << 15) - (int64_t) (16777216)) + var1);
var3 = (((int64_t) lookupTable2[gas_range] * (int64_t) var1) >> 9);
calc_gas_res = (uint32_t) ((var3 + ((int64_t) var2 >> 1)) / (int64_t) var2);
return calc_gas_res;
}
/*!
* @brief This internal API is used to calculate the Heat Resistance value.
*/
static uint8_t calc_heater_res(uint16_t temp, const struct bme680_dev *dev)
{
uint8_t heatr_res;
int32_t var1;
int32_t var2;
int32_t var3;
int32_t var4;
int32_t var5;
int32_t heatr_res_x100;
if (temp > 400) /* Cap temperature */
temp = 400;
var1 = (((int32_t) dev->amb_temp * dev->calib.par_gh3) / 1000) * 256;
var2 = (dev->calib.par_gh1 + 784) * (((((dev->calib.par_gh2 + 154009) * temp * 5) / 100) + 3276800) / 10);
var3 = var1 + (var2 / 2);
var4 = (var3 / (dev->calib.res_heat_range + 4));
var5 = (131 * dev->calib.res_heat_val) + 65536;
heatr_res_x100 = (int32_t) (((var4 / var5) - 250) * 34);
heatr_res = (uint8_t) ((heatr_res_x100 + 50) / 100);
return heatr_res;
}
#else
/*!
* @brief This internal API is used to calculate the
* temperature value in float format
*/
static float calc_temperature(uint32_t temp_adc, struct bme680_dev *dev)
{
float var1 = 0;
float var2 = 0;
float calc_temp = 0;
/* calculate var1 data */
var1 = ((((float)temp_adc / 16384.0f) - ((float)dev->calib.par_t1 / 1024.0f))
* ((float)dev->calib.par_t2));
/* calculate var2 data */
var2 = (((((float)temp_adc / 131072.0f) - ((float)dev->calib.par_t1 / 8192.0f)) *
(((float)temp_adc / 131072.0f) - ((float)dev->calib.par_t1 / 8192.0f))) *
((float)dev->calib.par_t3 * 16.0f));
/* t_fine value*/
dev->calib.t_fine = (var1 + var2);
/* compensated temperature data*/
calc_temp = ((dev->calib.t_fine) / 5120.0f);
return calc_temp;
}
/*!
* @brief This internal API is used to calculate the
* pressure value in float format
*/
static float calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev)
{
float var1 = 0;
float var2 = 0;
float var3 = 0;
float calc_pres = 0;
var1 = (((float)dev->calib.t_fine / 2.0f) - 64000.0f);
var2 = var1 * var1 * (((float)dev->calib.par_p6) / (131072.0f));
var2 = var2 + (var1 * ((float)dev->calib.par_p5) * 2.0f);
var2 = (var2 / 4.0f) + (((float)dev->calib.par_p4) * 65536.0f);
var1 = (((((float)dev->calib.par_p3 * var1 * var1) / 16384.0f)
+ ((float)dev->calib.par_p2 * var1)) / 524288.0f);
var1 = ((1.0f + (var1 / 32768.0f)) * ((float)dev->calib.par_p1));
calc_pres = (1048576.0f - ((float)pres_adc));
/* Avoid exception caused by division by zero */
if ((int)var1 != 0) {
calc_pres = (((calc_pres - (var2 / 4096.0f)) * 6250.0f) / var1);
var1 = (((float)dev->calib.par_p9) * calc_pres * calc_pres) / 2147483648.0f;
var2 = calc_pres * (((float)dev->calib.par_p8) / 32768.0f);
var3 = ((calc_pres / 256.0f) * (calc_pres / 256.0f) * (calc_pres / 256.0f)
* (dev->calib.par_p10 / 131072.0f));
calc_pres = (calc_pres + (var1 + var2 + var3 + ((float)dev->calib.par_p7 * 128.0f)) / 16.0f);
} else {
calc_pres = 0;
}
return calc_pres;
}
/*!
* @brief This internal API is used to calculate the
* humidity value in float format
*/
static float calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev)
{
float calc_hum = 0;
float var1 = 0;
float var2 = 0;
float var3 = 0;
float var4 = 0;
float temp_comp;
/* compensated temperature data*/
temp_comp = ((dev->calib.t_fine) / 5120.0f);
var1 = (float)((float)hum_adc) - (((float)dev->calib.par_h1 * 16.0f) + (((float)dev->calib.par_h3 / 2.0f)
* temp_comp));
var2 = var1 * ((float)(((float) dev->calib.par_h2 / 262144.0f) * (1.0f + (((float)dev->calib.par_h4 / 16384.0f)
* temp_comp) + (((float)dev->calib.par_h5 / 1048576.0f) * temp_comp * temp_comp))));
var3 = (float) dev->calib.par_h6 / 16384.0f;
var4 = (float) dev->calib.par_h7 / 2097152.0f;
calc_hum = var2 + ((var3 + (var4 * temp_comp)) * var2 * var2);
if (calc_hum > 100.0f)
calc_hum = 100.0f;
else if (calc_hum < 0.0f)
calc_hum = 0.0f;
return calc_hum;
}
/*!
* @brief This internal API is used to calculate the
* gas resistance value in float format
*/
static float calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev)
{
float calc_gas_res;
float var1 = 0;
float var2 = 0;
float var3 = 0;
const float lookup_k1_range[16] = {
0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -0.8,
0.0, 0.0, -0.2, -0.5, 0.0, -1.0, 0.0, 0.0};
const float lookup_k2_range[16] = {
0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.0, -0.8,
-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
var1 = (1340.0f + (5.0f * dev->calib.range_sw_err));
var2 = (var1) * (1.0f + lookup_k1_range[gas_range]/100.0f);
var3 = 1.0f + (lookup_k2_range[gas_range]/100.0f);
calc_gas_res = 1.0f / (float)(var3 * (0.000000125f) * (float)(1 << gas_range) * (((((float)gas_res_adc)
- 512.0f)/var2) + 1.0f));
return calc_gas_res;
}
/*!
* @brief This internal API is used to calculate the
* heater resistance value in float format
*/
static float calc_heater_res(uint16_t temp, const struct bme680_dev *dev)
{
float var1 = 0;
float var2 = 0;
float var3 = 0;
float var4 = 0;
float var5 = 0;
float res_heat = 0;
if (temp > 400) /* Cap temperature */
temp = 400;
var1 = (((float)dev->calib.par_gh1 / (16.0f)) + 49.0f);
var2 = ((((float)dev->calib.par_gh2 / (32768.0f)) * (0.0005f)) + 0.00235f);
var3 = ((float)dev->calib.par_gh3 / (1024.0f));
var4 = (var1 * (1.0f + (var2 * (float)temp)));
var5 = (var4 + (var3 * (float)dev->amb_temp));
res_heat = (uint8_t)(3.4f * ((var5 * (4 / (4 + (float)dev->calib.res_heat_range)) *
(1/(1 + ((float) dev->calib.res_heat_val * 0.002f)))) - 25));
return res_heat;
}
#endif
/*!
* @brief This internal API is used to calculate the Heat duration value.
*/
static uint8_t calc_heater_dur(uint16_t dur)
{
uint8_t factor = 0;
uint8_t durval;
if (dur >= 0xfc0) {
durval = 0xff; /* Max duration*/
} else {
while (dur > 0x3F) {
dur = dur / 4;
factor += 1;
}
durval = (uint8_t) (dur + (factor * 64));
}
return durval;
}
/*!
* @brief This internal API is used to calculate the field data of sensor.
*/
static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev *dev)
{
int8_t rslt;
uint8_t buff[BME680_FIELD_LENGTH] = { 0 };
uint8_t gas_range;
uint32_t adc_temp;
uint32_t adc_pres;
uint16_t adc_hum;
uint16_t adc_gas_res;
uint8_t tries = 10;
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
do {
if (rslt == BME680_OK) {
rslt = bme680_get_regs(((uint8_t) (BME680_FIELD0_ADDR)), buff, (uint16_t) BME680_FIELD_LENGTH,
dev);
data->status = buff[0] & BME680_NEW_DATA_MSK;
data->gas_index = buff[0] & BME680_GAS_INDEX_MSK;
data->meas_index = buff[1];
/* read the raw data from the sensor */
adc_pres = (uint32_t) (((uint32_t) buff[2] * 4096) | ((uint32_t) buff[3] * 16)
| ((uint32_t) buff[4] / 16));
adc_temp = (uint32_t) (((uint32_t) buff[5] * 4096) | ((uint32_t) buff[6] * 16)
| ((uint32_t) buff[7] / 16));
adc_hum = (uint16_t) (((uint32_t) buff[8] * 256) | (uint32_t) buff[9]);
adc_gas_res = (uint16_t) ((uint32_t) buff[13] * 4 | (((uint32_t) buff[14]) / 64));
gas_range = buff[14] & BME680_GAS_RANGE_MSK;
data->status |= buff[14] & BME680_GASM_VALID_MSK;
data->status |= buff[14] & BME680_HEAT_STAB_MSK;
if (data->status & BME680_NEW_DATA_MSK) {
data->temperature = calc_temperature(adc_temp, dev);
data->pressure = calc_pressure(adc_pres, dev);
data->humidity = calc_humidity(adc_hum, dev);
data->gas_resistance = calc_gas_resistance(adc_gas_res, gas_range, dev);
break;
}
/* Delay to poll the data */
dev->delay_ms(BME680_POLL_PERIOD_MS);
}
tries--;
} while (tries);
if (!tries)
rslt = BME680_W_NO_NEW_DATA;
return rslt;
}
/*!
* @brief This internal API is used to set the memory page based on register address.
*/
static int8_t set_mem_page(uint8_t reg_addr, struct bme680_dev *dev)
{
int8_t rslt;
uint8_t reg;
uint8_t mem_page;
/* Check for null pointers in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
if (reg_addr > 0x7f)
mem_page = BME680_MEM_PAGE1;
else
mem_page = BME680_MEM_PAGE0;
if (mem_page != dev->mem_page) {
dev->mem_page = mem_page;
dev->com_rslt = dev->read(dev->dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, &reg, 1);
if (dev->com_rslt != 0)
rslt = BME680_E_COM_FAIL;
if (rslt == BME680_OK) {
reg = reg & (~BME680_MEM_PAGE_MSK);
reg = reg | (dev->mem_page & BME680_MEM_PAGE_MSK);
dev->com_rslt = dev->write(dev->dev_id, BME680_MEM_PAGE_ADDR & BME680_SPI_WR_MSK,
&reg, 1);
if (dev->com_rslt != 0)
rslt = BME680_E_COM_FAIL;
}
}
}
return rslt;
}
/*!
* @brief This internal API is used to get the memory page based on register address.
*/
static int8_t get_mem_page(struct bme680_dev *dev)
{
int8_t rslt;
uint8_t reg;
/* Check for null pointer in the device structure*/
rslt = null_ptr_check(dev);
if (rslt == BME680_OK) {
dev->com_rslt = dev->read(dev->dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, &reg, 1);
if (dev->com_rslt != 0)
rslt = BME680_E_COM_FAIL;
else
dev->mem_page = reg & BME680_MEM_PAGE_MSK;
}
return rslt;
}
/*!
* @brief This internal API is used to validate the boundary
* conditions.
*/
static int8_t boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bme680_dev *dev)
{
int8_t rslt = BME680_OK;
if (value != NULL) {
/* Check if value is below minimum value */
if (*value < min) {
/* Auto correct the invalid value to minimum value */
*value = min;
dev->info_msg |= BME680_I_MIN_CORRECTION;
}
/* Check if value is above maximum value */
if (*value > max) {
/* Auto correct the invalid value to maximum value */
*value = max;
dev->info_msg |= BME680_I_MAX_CORRECTION;
}
} else {
rslt = BME680_E_NULL_PTR;
}
return rslt;
}
/*!
* @brief This internal API is used to validate the device structure pointer for
* null conditions.
*/
static int8_t null_ptr_check(const struct bme680_dev *dev)
{
int8_t rslt;
if ((dev == NULL) || (dev->read == NULL) || (dev->write == NULL) || (dev->delay_ms == NULL)) {
/* Device structure pointer is not valid */
rslt = BME680_E_NULL_PTR;
} else {
/* Device structure is fine */
rslt = BME680_OK;
}
return rslt;
}
/**
* Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of the copyright holder nor the names of the
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
* OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
* The information provided is believed to be accurate and reliable.
* The copyright holder assumes no responsibility
* for the consequences of use
* of such information nor for any infringement of patents or
* other rights of third parties which may result from its use.
* No license is granted by implication or otherwise under any patent or
* patent rights of the copyright holder.
*
* @file bme680.h
* @date 19 Jun 2018
* @version 3.5.9
* @brief
*
*/
/*! @file bme680.h
@brief Sensor driver for BME680 sensor */
/*!
* @defgroup BME680 SENSOR API
* @{*/
#ifndef BME680_H_
#define BME680_H_
/*! CPP guard */
#ifdef __cplusplus
extern "C"
{
#endif
/* Header includes */
#include "bme680_defs.h"
/* function prototype declarations */
/*!
* @brief This API is the entry point.
* It reads the chip-id and calibration data from the sensor.
*
* @param[in,out] dev : Structure instance of bme680_dev
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
int8_t bme680_init(struct bme680_dev *dev);
/*!
* @brief This API writes the given data to the register address
* of the sensor.
*
* @param[in] reg_addr : Register address from where the data to be written.
* @param[in] reg_data : Pointer to data buffer which is to be written
* in the sensor.
* @param[in] len : No of bytes of data to write..
* @param[in] dev : Structure instance of bme680_dev.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
int8_t bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len, struct bme680_dev *dev);
/*!
* @brief This API reads the data from the given register address of the sensor.
*
* @param[in] reg_addr : Register address from where the data to be read
* @param[out] reg_data : Pointer to data buffer to store the read data.
* @param[in] len : No of bytes of data to be read.
* @param[in] dev : Structure instance of bme680_dev.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
int8_t bme680_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len, struct bme680_dev *dev);
/*!
* @brief This API performs the soft reset of the sensor.
*
* @param[in] dev : Structure instance of bme680_dev.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error.
*/
int8_t bme680_soft_reset(struct bme680_dev *dev);
/*!
* @brief This API is used to set the power mode of the sensor.
*
* @param[in] dev : Structure instance of bme680_dev
* @note : Pass the value to bme680_dev.power_mode structure variable.
*
* value | mode
* -------------|------------------
* 0x00 | BME680_SLEEP_MODE
* 0x01 | BME680_FORCED_MODE
*
* * @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
int8_t bme680_set_sensor_mode(struct bme680_dev *dev);
/*!
* @brief This API is used to get the power mode of the sensor.
*
* @param[in] dev : Structure instance of bme680_dev
* @note : bme680_dev.power_mode structure variable hold the power mode.
*
* value | mode
* ---------|------------------
* 0x00 | BME680_SLEEP_MODE
* 0x01 | BME680_FORCED_MODE
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
int8_t bme680_get_sensor_mode(struct bme680_dev *dev);
/*!
* @brief This API is used to set the profile duration of the sensor.
*
* @param[in] dev : Structure instance of bme680_dev.
* @param[in] duration : Duration of the measurement in ms.
*
* @return Nothing
*/
void bme680_set_profile_dur(uint16_t duration, struct bme680_dev *dev);
/*!
* @brief This API is used to get the profile duration of the sensor.
*
* @param[in] dev : Structure instance of bme680_dev.
* @param[in] duration : Duration of the measurement in ms.
*
* @return Nothing
*/
void bme680_get_profile_dur(uint16_t *duration, const struct bme680_dev *dev);
/*!
* @brief This API reads the pressure, temperature and humidity and gas data
* from the sensor, compensates the data and store it in the bme680_data
* structure instance passed by the user.
*
* @param[out] data: Structure instance to hold the data.
* @param[in] dev : Structure instance of bme680_dev.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
int8_t bme680_get_sensor_data(struct bme680_field_data *data, struct bme680_dev *dev);
/*!
* @brief This API is used to set the oversampling, filter and T,P,H, gas selection
* settings in the sensor.
*
* @param[in] dev : Structure instance of bme680_dev.
* @param[in] desired_settings : Variable used to select the settings which
* are to be set in the sensor.
*
* Macros | Functionality
*---------------------------------|----------------------------------------------
* BME680_OST_SEL | To set temperature oversampling.
* BME680_OSP_SEL | To set pressure oversampling.
* BME680_OSH_SEL | To set humidity oversampling.
* BME680_GAS_MEAS_SEL | To set gas measurement setting.
* BME680_FILTER_SEL | To set filter setting.
* BME680_HCNTRL_SEL | To set humidity control setting.
* BME680_RUN_GAS_SEL | To set run gas setting.
* BME680_NBCONV_SEL | To set NB conversion setting.
* BME680_GAS_SENSOR_SEL | To set all gas sensor related settings
*
* @note : Below are the macros to be used by the user for selecting the
* desired settings. User can do OR operation of these macros for configuring
* multiple settings.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error.
*/
int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev);
/*!
* @brief This API is used to get the oversampling, filter and T,P,H, gas selection
* settings in the sensor.
*
* @param[in] dev : Structure instance of bme680_dev.
* @param[in] desired_settings : Variable used to select the settings which
* are to be get from the sensor.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error.
*/
int8_t bme680_get_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev);
#ifdef __cplusplus
}
#endif /* End of CPP guard */
#endif /* BME680_H_ */
/** @}*/
/**
* Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of the copyright holder nor the names of the
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
* OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
* The information provided is believed to be accurate and reliable.
* The copyright holder assumes no responsibility
* for the consequences of use
* of such information nor for any infringement of patents or
* other rights of third parties which may result from its use.
* No license is granted by implication or otherwise under any patent or
* patent rights of the copyright holder.
*
* @file bme680_defs.h
* @date 19 Jun 2018
* @version 3.5.9
* @brief
*
*/
/*! @file bme680_defs.h
@brief Sensor driver for BME680 sensor */
/*!
* @defgroup BME680 SENSOR API
* @brief
* @{*/
#ifndef BME680_DEFS_H_
#define BME680_DEFS_H_
/********************************************************/
/* header includes */
#ifdef __KERNEL__
#include <linux/types.h>
#include <linux/kernel.h>
#else
#include <stdint.h>
#include <stddef.h>
#endif
/******************************************************************************/
/*! @name Common macros */
/******************************************************************************/
#if !defined(UINT8_C) && !defined(INT8_C)
#define INT8_C(x) S8_C(x)
#define UINT8_C(x) U8_C(x)
#endif
#if !defined(UINT16_C) && !defined(INT16_C)
#define INT16_C(x) S16_C(x)
#define UINT16_C(x) U16_C(x)
#endif
#if !defined(INT32_C) && !defined(UINT32_C)
#define INT32_C(x) S32_C(x)
#define UINT32_C(x) U32_C(x)
#endif
#if !defined(INT64_C) && !defined(UINT64_C)
#define INT64_C(x) S64_C(x)
#define UINT64_C(x) U64_C(x)
#endif
/**@}*/
/**\name C standard macros */
#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *) 0)
#endif
#endif
/** BME680 configuration macros */
/** Enable or un-comment the macro to provide floating point data output */
#ifndef BME680_FLOAT_POINT_COMPENSATION
/* #define BME680_FLOAT_POINT_COMPENSATION */
#endif
/** BME680 General config */
#define BME680_POLL_PERIOD_MS UINT8_C(10)
/** BME680 I2C addresses */
#define BME680_I2C_ADDR_PRIMARY UINT8_C(0x76)
#define BME680_I2C_ADDR_SECONDARY UINT8_C(0x77)
/** BME680 unique chip identifier */
#define BME680_CHIP_ID UINT8_C(0x61)
/** BME680 coefficients related defines */
#define BME680_COEFF_SIZE UINT8_C(41)
#define BME680_COEFF_ADDR1_LEN UINT8_C(25)
#define BME680_COEFF_ADDR2_LEN UINT8_C(16)
/** BME680 field_x related defines */
#define BME680_FIELD_LENGTH UINT8_C(15)
#define BME680_FIELD_ADDR_OFFSET UINT8_C(17)
/** Soft reset command */
#define BME680_SOFT_RESET_CMD UINT8_C(0xb6)
/** Error code definitions */
#define BME680_OK INT8_C(0)
/* Errors */
#define BME680_E_NULL_PTR INT8_C(-1)
#define BME680_E_COM_FAIL INT8_C(-2)
#define BME680_E_DEV_NOT_FOUND INT8_C(-3)
#define BME680_E_INVALID_LENGTH INT8_C(-4)
/* Warnings */
#define BME680_W_DEFINE_PWR_MODE INT8_C(1)
#define BME680_W_NO_NEW_DATA INT8_C(2)
/* Info's */
#define BME680_I_MIN_CORRECTION UINT8_C(1)
#define BME680_I_MAX_CORRECTION UINT8_C(2)
/** Register map */
/** Other coefficient's address */
#define BME680_ADDR_RES_HEAT_VAL_ADDR UINT8_C(0x00)
#define BME680_ADDR_RES_HEAT_RANGE_ADDR UINT8_C(0x02)
#define BME680_ADDR_RANGE_SW_ERR_ADDR UINT8_C(0x04)
#define BME680_ADDR_SENS_CONF_START UINT8_C(0x5A)
#define BME680_ADDR_GAS_CONF_START UINT8_C(0x64)
/** Field settings */
#define BME680_FIELD0_ADDR UINT8_C(0x1d)
/** Heater settings */
#define BME680_RES_HEAT0_ADDR UINT8_C(0x5a)
#define BME680_GAS_WAIT0_ADDR UINT8_C(0x64)
/** Sensor configuration registers */
#define BME680_CONF_HEAT_CTRL_ADDR UINT8_C(0x70)
#define BME680_CONF_ODR_RUN_GAS_NBC_ADDR UINT8_C(0x71)
#define BME680_CONF_OS_H_ADDR UINT8_C(0x72)
#define BME680_MEM_PAGE_ADDR UINT8_C(0xf3)
#define BME680_CONF_T_P_MODE_ADDR UINT8_C(0x74)
#define BME680_CONF_ODR_FILT_ADDR UINT8_C(0x75)
/** Coefficient's address */
#define BME680_COEFF_ADDR1 UINT8_C(0x89)
#define BME680_COEFF_ADDR2 UINT8_C(0xe1)
/** Chip identifier */
#define BME680_CHIP_ID_ADDR UINT8_C(0xd0)
/** Soft reset register */
#define BME680_SOFT_RESET_ADDR UINT8_C(0xe0)
/** Heater control settings */
#define BME680_ENABLE_HEATER UINT8_C(0x00)
#define BME680_DISABLE_HEATER UINT8_C(0x08)
/** Gas measurement settings */
#define BME680_DISABLE_GAS_MEAS UINT8_C(0x00)
#define BME680_ENABLE_GAS_MEAS UINT8_C(0x01)
/** Over-sampling settings */
#define BME680_OS_NONE UINT8_C(0)
#define BME680_OS_1X UINT8_C(1)
#define BME680_OS_2X UINT8_C(2)
#define BME680_OS_4X UINT8_C(3)
#define BME680_OS_8X UINT8_C(4)
#define BME680_OS_16X UINT8_C(5)
/** IIR filter settings */
#define BME680_FILTER_SIZE_0 UINT8_C(0)
#define BME680_FILTER_SIZE_1 UINT8_C(1)
#define BME680_FILTER_SIZE_3 UINT8_C(2)
#define BME680_FILTER_SIZE_7 UINT8_C(3)
#define BME680_FILTER_SIZE_15 UINT8_C(4)
#define BME680_FILTER_SIZE_31 UINT8_C(5)
#define BME680_FILTER_SIZE_63 UINT8_C(6)
#define BME680_FILTER_SIZE_127 UINT8_C(7)
/** Power mode settings */
#define BME680_SLEEP_MODE UINT8_C(0)
#define BME680_FORCED_MODE UINT8_C(1)
/** Delay related macro declaration */
#define BME680_RESET_PERIOD UINT32_C(10)
/** SPI memory page settings */
#define BME680_MEM_PAGE0 UINT8_C(0x10)
#define BME680_MEM_PAGE1 UINT8_C(0x00)
/** Ambient humidity shift value for compensation */
#define BME680_HUM_REG_SHIFT_VAL UINT8_C(4)
/** Run gas enable and disable settings */
#define BME680_RUN_GAS_DISABLE UINT8_C(0)
#define BME680_RUN_GAS_ENABLE UINT8_C(1)
/** Buffer length macro declaration */
#define BME680_TMP_BUFFER_LENGTH UINT8_C(40)
#define BME680_REG_BUFFER_LENGTH UINT8_C(6)
#define BME680_FIELD_DATA_LENGTH UINT8_C(3)
#define BME680_GAS_REG_BUF_LENGTH UINT8_C(20)
/** Settings selector */
#define BME680_OST_SEL UINT16_C(1)
#define BME680_OSP_SEL UINT16_C(2)
#define BME680_OSH_SEL UINT16_C(4)
#define BME680_GAS_MEAS_SEL UINT16_C(8)
#define BME680_FILTER_SEL UINT16_C(16)
#define BME680_HCNTRL_SEL UINT16_C(32)
#define BME680_RUN_GAS_SEL UINT16_C(64)
#define BME680_NBCONV_SEL UINT16_C(128)
#define BME680_GAS_SENSOR_SEL (BME680_GAS_MEAS_SEL | BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)
/** Number of conversion settings*/
#define BME680_NBCONV_MIN UINT8_C(0)
#define BME680_NBCONV_MAX UINT8_C(10)
/** Mask definitions */
#define BME680_GAS_MEAS_MSK UINT8_C(0x30)
#define BME680_NBCONV_MSK UINT8_C(0X0F)
#define BME680_FILTER_MSK UINT8_C(0X1C)
#define BME680_OST_MSK UINT8_C(0XE0)
#define BME680_OSP_MSK UINT8_C(0X1C)
#define BME680_OSH_MSK UINT8_C(0X07)
#define BME680_HCTRL_MSK UINT8_C(0x08)
#define BME680_RUN_GAS_MSK UINT8_C(0x10)
#define BME680_MODE_MSK UINT8_C(0x03)
#define BME680_RHRANGE_MSK UINT8_C(0x30)
#define BME680_RSERROR_MSK UINT8_C(0xf0)
#define BME680_NEW_DATA_MSK UINT8_C(0x80)
#define BME680_GAS_INDEX_MSK UINT8_C(0x0f)
#define BME680_GAS_RANGE_MSK UINT8_C(0x0f)
#define BME680_GASM_VALID_MSK UINT8_C(0x20)
#define BME680_HEAT_STAB_MSK UINT8_C(0x10)
#define BME680_MEM_PAGE_MSK UINT8_C(0x10)
#define BME680_SPI_RD_MSK UINT8_C(0x80)
#define BME680_SPI_WR_MSK UINT8_C(0x7f)
#define BME680_BIT_H1_DATA_MSK UINT8_C(0x0F)
/** Bit position definitions for sensor settings */
#define BME680_GAS_MEAS_POS UINT8_C(4)
#define BME680_FILTER_POS UINT8_C(2)
#define BME680_OST_POS UINT8_C(5)
#define BME680_OSP_POS UINT8_C(2)
#define BME680_RUN_GAS_POS UINT8_C(4)
/** Array Index to Field data mapping for Calibration Data*/
#define BME680_T2_LSB_REG (1)
#define BME680_T2_MSB_REG (2)
#define BME680_T3_REG (3)
#define BME680_P1_LSB_REG (5)
#define BME680_P1_MSB_REG (6)
#define BME680_P2_LSB_REG (7)
#define BME680_P2_MSB_REG (8)
#define BME680_P3_REG (9)
#define BME680_P4_LSB_REG (11)
#define BME680_P4_MSB_REG (12)
#define BME680_P5_LSB_REG (13)
#define BME680_P5_MSB_REG (14)
#define BME680_P7_REG (15)
#define BME680_P6_REG (16)
#define BME680_P8_LSB_REG (19)
#define BME680_P8_MSB_REG (20)
#define BME680_P9_LSB_REG (21)
#define BME680_P9_MSB_REG (22)
#define BME680_P10_REG (23)
#define BME680_H2_MSB_REG (25)
#define BME680_H2_LSB_REG (26)
#define BME680_H1_LSB_REG (26)
#define BME680_H1_MSB_REG (27)
#define BME680_H3_REG (28)
#define BME680_H4_REG (29)
#define BME680_H5_REG (30)
#define BME680_H6_REG (31)
#define BME680_H7_REG (32)
#define BME680_T1_LSB_REG (33)
#define BME680_T1_MSB_REG (34)
#define BME680_GH2_LSB_REG (35)
#define BME680_GH2_MSB_REG (36)
#define BME680_GH1_REG (37)
#define BME680_GH3_REG (38)
/** BME680 register buffer index settings*/
#define BME680_REG_FILTER_INDEX UINT8_C(5)
#define BME680_REG_TEMP_INDEX UINT8_C(4)
#define BME680_REG_PRES_INDEX UINT8_C(4)
#define BME680_REG_HUM_INDEX UINT8_C(2)
#define BME680_REG_NBCONV_INDEX UINT8_C(1)
#define BME680_REG_RUN_GAS_INDEX UINT8_C(1)
#define BME680_REG_HCTRL_INDEX UINT8_C(0)
/** BME680 pressure calculation macros */
/*! This max value is used to provide precedence to multiplication or division
* in pressure compensation equation to achieve least loss of precision and
* avoiding overflows.
* i.e Comparing value, BME680_MAX_OVERFLOW_VAL = INT32_C(1 << 30)
*/
#define BME680_MAX_OVERFLOW_VAL INT32_C(0x40000000)
/** Macro to combine two 8 bit data's to form a 16 bit data */
#define BME680_CONCAT_BYTES(msb, lsb) (((uint16_t)msb << 8) | (uint16_t)lsb)
/** Macro to SET and GET BITS of a register */
#define BME680_SET_BITS(reg_data, bitname, data) \
((reg_data & ~(bitname##_MSK)) | \
((data << bitname##_POS) & bitname##_MSK))
#define BME680_GET_BITS(reg_data, bitname) ((reg_data & (bitname##_MSK)) >> \
(bitname##_POS))
/** Macro variant to handle the bitname position if it is zero */
#define BME680_SET_BITS_POS_0(reg_data, bitname, data) \
((reg_data & ~(bitname##_MSK)) | \
(data & bitname##_MSK))
#define BME680_GET_BITS_POS_0(reg_data, bitname) (reg_data & (bitname##_MSK))
/** Type definitions */
/*!
* Generic communication function pointer
* @param[in] dev_id: Place holder to store the id of the device structure
* Can be used to store the index of the Chip select or
* I2C address of the device.
* @param[in] reg_addr: Used to select the register the where data needs to
* be read from or written to.
* @param[in/out] reg_data: Data array to read/write
* @param[in] len: Length of the data array
*/
typedef int8_t (*bme680_com_fptr_t)(uint8_t dev_id, uint8_t reg_addr, uint8_t *data, uint16_t len);
/*!
* Delay function pointer
* @param[in] period: Time period in milliseconds
*/
typedef void (*bme680_delay_fptr_t)(uint32_t period);
/*!
* @brief Interface selection Enumerations
*/
enum bme680_intf {
/*! SPI interface */
BME680_SPI_INTF,
/*! I2C interface */
BME680_I2C_INTF
};
/* structure definitions */
/*!
* @brief Sensor field data structure
*/
struct bme680_field_data {
/*! Contains new_data, gasm_valid & heat_stab */
uint8_t status;
/*! The index of the heater profile used */
uint8_t gas_index;
/*! Measurement index to track order */
uint8_t meas_index;
#ifndef BME680_FLOAT_POINT_COMPENSATION
/*! Temperature in degree celsius x100 */
int16_t temperature;
/*! Pressure in Pascal */
uint32_t pressure;
/*! Humidity in % relative humidity x1000 */
uint32_t humidity;
/*! Gas resistance in Ohms */
uint32_t gas_resistance;
#else
/*! Temperature in degree celsius */
float temperature;
/*! Pressure in Pascal */
float pressure;
/*! Humidity in % relative humidity x1000 */
float humidity;
/*! Gas resistance in Ohms */
float gas_resistance;
#endif
};
/*!
* @brief Structure to hold the Calibration data
*/
struct bme680_calib_data {
/*! Variable to store calibrated humidity data */
uint16_t par_h1;
/*! Variable to store calibrated humidity data */
uint16_t par_h2;
/*! Variable to store calibrated humidity data */
int8_t par_h3;
/*! Variable to store calibrated humidity data */
int8_t par_h4;
/*! Variable to store calibrated humidity data */
int8_t par_h5;
/*! Variable to store calibrated humidity data */
uint8_t par_h6;
/*! Variable to store calibrated humidity data */
int8_t par_h7;
/*! Variable to store calibrated gas data */
int8_t par_gh1;
/*! Variable to store calibrated gas data */
int16_t par_gh2;
/*! Variable to store calibrated gas data */
int8_t par_gh3;
/*! Variable to store calibrated temperature data */
uint16_t par_t1;
/*! Variable to store calibrated temperature data */
int16_t par_t2;
/*! Variable to store calibrated temperature data */
int8_t par_t3;
/*! Variable to store calibrated pressure data */
uint16_t par_p1;
/*! Variable to store calibrated pressure data */
int16_t par_p2;
/*! Variable to store calibrated pressure data */
int8_t par_p3;
/*! Variable to store calibrated pressure data */
int16_t par_p4;
/*! Variable to store calibrated pressure data */
int16_t par_p5;
/*! Variable to store calibrated pressure data */
int8_t par_p6;
/*! Variable to store calibrated pressure data */
int8_t par_p7;
/*! Variable to store calibrated pressure data */
int16_t par_p8;
/*! Variable to store calibrated pressure data */
int16_t par_p9;
/*! Variable to store calibrated pressure data */
uint8_t par_p10;
#ifndef BME680_FLOAT_POINT_COMPENSATION
/*! Variable to store t_fine size */
int32_t t_fine;
#else
/*! Variable to store t_fine size */
float t_fine;
#endif
/*! Variable to store heater resistance range */
uint8_t res_heat_range;
/*! Variable to store heater resistance value */
int8_t res_heat_val;
/*! Variable to store error range */
int8_t range_sw_err;
};
/*!
* @brief BME680 sensor settings structure which comprises of ODR,
* over-sampling and filter settings.
*/
struct bme680_tph_sett {
/*! Humidity oversampling */
uint8_t os_hum;
/*! Temperature oversampling */
uint8_t os_temp;
/*! Pressure oversampling */
uint8_t os_pres;
/*! Filter coefficient */
uint8_t filter;
};
/*!
* @brief BME680 gas sensor which comprises of gas settings
* and status parameters
*/
struct bme680_gas_sett {
/*! Variable to store nb conversion */
uint8_t nb_conv;
/*! Variable to store heater control */
uint8_t heatr_ctrl;
/*! Run gas enable value */
uint8_t run_gas;
/*! Heater temperature value */
uint16_t heatr_temp;
/*! Duration profile value */
uint16_t heatr_dur;
};
/*!
* @brief BME680 device structure
*/
struct bme680_dev {
/*! Chip Id */
uint8_t chip_id;
/*! Device Id */
uint8_t dev_id;
/*! SPI/I2C interface */
enum bme680_intf intf;
/*! Memory page used */
uint8_t mem_page;
/*! Ambient temperature in Degree C */
int8_t amb_temp;
/*! Sensor calibration data */
struct bme680_calib_data calib;
/*! Sensor settings */
struct bme680_tph_sett tph_sett;
/*! Gas Sensor settings */
struct bme680_gas_sett gas_sett;
/*! Sensor power modes */
uint8_t power_mode;
/*! New sensor fields */
uint8_t new_fields;
/*! Store the info messages */
uint8_t info_msg;
/*! Bus read function pointer */
bme680_com_fptr_t read;
/*! Bus write function pointer */
bme680_com_fptr_t write;
/*! delay function pointer */
bme680_delay_fptr_t delay_ms;
/*! Communication function result */
int8_t com_rslt;
};
#endif /* BME680_DEFS_H_ */
/** @}*/
/** @}*/
# Change Log
All notable changes to the BME680 Sensor API will be documented in this file.
## v3.5.3, 30 Oct 2017
### Changed
- Changed the compensation equation formulae to use shifting operation
- Updated the "bme680_get_profile_dur" API
- Fixed Checkpatch and made linux compatible
## v3.5.2, 18 Oct 2017
### Changed
- Fixed bug of temperature compensation in pressure
## v3.5.1, 5 Jul 2017
### Changed
- Fixed bug with overwriting of the result with communication results
- Added member in the dev structure to store communication results
- Updated set profile duration API to not return a result.
- Added new API to get the duration for the existing profile
- Fixed bug with setting gas configuration. Reduced to writing only relevant bytes
- Updated readme
- Updated documentation for the type definitions
- Removed mode check for get sensor data and setting and getting profile dur
## v3.5.0, 28 Jun 2017
### Changed
- Fixed bug with getting and setting mem pages
- Changed initialization sequence to be more robust
- Added additional tries while reading data in case of inadequate delay
## v3.4.0, 8 Jun 2017
### Changed
- Modified the bme680_get_sensor_data API. User has to now pass the struct that stores the data rather than retrieving from the bme680_dev structure.
- Fixed possible bugs
## v3.3.0, 24 May 2017
### Changed
- Name changes in the BME680 device structure.
- Removed sequential and parallel modes.
- Removed ODR related sensor settings
- Modified get sensor settings API with user selection.
- Removed sort sensor data and swap fields API which are not required.
### Added
- BME680 set profile duration API.
## v3.2.1, 17 May 2017
### Added
- Took the reference as base version 3.2.1 of BME680 sensor and added.
File added
File added
File added
File added
/*
* Copyright (C) 2015, 2016, 2017 Robert Bosch. All Rights Reserved.
*
* Disclaimer
*
* Common:
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
* The resale and/or use of products are at the purchasers own risk and his own responsibility. The
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
*
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
* incidental, or consequential damages, arising from any product use not covered by the parameters of
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
* Sensortec for all costs in connection with such claims.
*
* The purchaser must monitor the market for the purchased products, particularly with regard to
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
*
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
* technical specifications of the product series. They are therefore not intended or fit for resale to third
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
* samples.
*
* Special:
* This software module (hereinafter called "Software") and any information on application-sheets
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
* application work. The Software and Information is subject to the following terms and conditions:
*
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
* personnel who have special experience and training. Do not use this Software if you do not have the
* proper experience or training.
*
* This Software package is provided `` as is `` and without any expressed or implied warranties,
* including without limitation, the implied warranties of merchantability and fitness for a particular
* purpose.
*
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
* otherwise stipulated in mandatory applicable law.
*
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
* responsibility for the consequences of use of such Information nor for any infringement of patents or
* other rights of third parties which may result from its use. No license is granted by implication or
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
* subject to change without notice.
*
* It is not allowed to deliver the source code of the Software to any third party without permission of
* Bosch Sensortec.
*
*/
/**
* @file bsec_datatypes.h
*
* @brief
* Contains the data types used by BSEC
*
*/
#ifndef __BSEC_DATATYPES_H__
#define __BSEC_DATATYPES_H__
#ifdef __cplusplus
extern "C"
{
#endif
/*!
* @addtogroup bsec_interface BSEC C Interface
* @{*/
#ifdef __KERNEL__
#include <linux/types.h>
#endif
#include <stdint.h>
#include <stddef.h>
#define BSEC_MAX_WORKBUFFER_SIZE (2048) /*!< Maximum size (in bytes) of the work buffer */
#define BSEC_MAX_PHYSICAL_SENSOR (8) /*!< Number of physical sensors that need allocated space before calling bsec_update_subscription() */
#define BSEC_MAX_PROPERTY_BLOB_SIZE (454) /*!< Maximum size (in bytes) of the data blobs returned by bsec_get_configuration() */
#define BSEC_MAX_STATE_BLOB_SIZE (139) /*!< Maximum size (in bytes) of the data blobs returned by bsec_get_state()*/
#define BSEC_SAMPLE_RATE_DISABLED (65535.0f) /*!< Sample rate of a disabled sensor */
#define BSEC_SAMPLE_RATE_ULP (0.0033333f) /*!< Sample rate in case of Ultra Low Power Mode */
#define BSEC_SAMPLE_RATE_LP (0.33333f) /*!< Sample rate in case of Low Power Mode */
#define BSEC_SAMPLE_RATE_ULP_MEASUREMENT_ON_DEMAND (0.0f) /*!< Input value used to trigger an extra measurment (ULP plus) */
#define BSEC_PROCESS_PRESSURE (1 << (BSEC_INPUT_PRESSURE-1)) /*!< process_data bitfield constant for pressure @sa bsec_bme_settings_t */
#define BSEC_PROCESS_TEMPERATURE (1 << (BSEC_INPUT_TEMPERATURE-1)) /*!< process_data bitfield constant for temperature @sa bsec_bme_settings_t */
#define BSEC_PROCESS_HUMIDITY (1 << (BSEC_INPUT_HUMIDITY-1)) /*!< process_data bitfield constant for humidity @sa bsec_bme_settings_t */
#define BSEC_PROCESS_GAS (1 << (BSEC_INPUT_GASRESISTOR-1)) /*!< process_data bitfield constant for gas sensor @sa bsec_bme_settings_t */
#define BSEC_NUMBER_OUTPUTS (14) /*!< Number of outputs, depending on solution */
#define BSEC_OUTPUT_INCLUDED (1210863) /*!< bitfield that indicates which outputs are included in the solution */
/*!
* @brief Enumeration for input (physical) sensors.
*
* Used to populate bsec_input_t::sensor_id. It is also used in bsec_sensor_configuration_t::sensor_id structs
* returned in the parameter required_sensor_settings of bsec_update_subscription().
*
* @sa bsec_sensor_configuration_t @sa bsec_input_t
*/
typedef enum
{
/**
* @brief Pressure sensor output of BMExxx [Pa]
*/
BSEC_INPUT_PRESSURE = 1,
/**
* @brief Humidity sensor output of BMExxx [%]
*
* @note Relative humidity strongly depends on the temperature (it is measured at). It may require a conversion to
* the temperature outside of the device.
*
* @sa bsec_virtual_sensor_t
*/
BSEC_INPUT_HUMIDITY = 2,
/**
* @brief Temperature sensor output of BMExxx [degrees Celsius]
*
* @note The BME680 is factory trimmed, thus the temperature sensor of the BME680 is very accurate.
* The temperature value is a very local measurement value and can be influenced by external heat sources.
*
* @sa bsec_virtual_sensor_t
*/
BSEC_INPUT_TEMPERATURE = 3,
/**
* @brief Gas sensor resistance output of BMExxx [Ohm]
*
* The resistance value changes due to varying VOC concentrations (the higher the concentration of reducing VOCs,
* the lower the resistance and vice versa).
*/
BSEC_INPUT_GASRESISTOR = 4, /*!< */
/**
* @brief Additional input for device heat compensation
*
* IAQ solution: The value is subtracted from ::BSEC_INPUT_TEMPERATURE to compute
* ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE.
*
* ALL solution: Generic heat source 1
*
* @sa bsec_virtual_sensor_t
*/
BSEC_INPUT_HEATSOURCE = 14,
/**
* @brief Additional input for device heat compensation 8
*
* Generic heat source 8
*/
/**
* @brief Additional input that disables baseline tracker
*
* 0 - Normal
* 1 - Event 1
* 2 - Event 2
*/
BSEC_INPUT_DISABLE_BASELINE_TRACKER = 23,
} bsec_physical_sensor_t;
/*!
* @brief Enumeration for output (virtual) sensors
*
* Used to populate bsec_output_t::sensor_id. It is also used in bsec_sensor_configuration_t::sensor_id structs
* passed in the parameter requested_virtual_sensors of bsec_update_subscription().
*
* @sa bsec_sensor_configuration_t @sa bsec_output_t
*/
typedef enum
{
/**
* @brief Indoor-air-quality estimate [0-500]
*
* Indoor-air-quality (IAQ) gives an indication of the relative change in ambient TVOCs detected by BME680.
*
* @note The IAQ scale ranges from 0 (clean air) to 500 (heavily polluted air). During operation, algorithms
* automatically calibrate and adapt themselves to the typical environments where the sensor is operated
* (e.g., home, workplace, inside a car, etc.).This automatic background calibration ensures that users experience
* consistent IAQ performance. The calibration process considers the recent measurement history (typ. up to four
* days) to ensure that IAQ=25 corresponds to typical good air and IAQ=250 indicates typical polluted air.
*/
BSEC_OUTPUT_IAQ = 1,
BSEC_OUTPUT_STATIC_IAQ = 2, /*!< Unscaled indoor-air-quality estimate */
BSEC_OUTPUT_CO2_EQUIVALENT = 3, /*!< co2 equivalent estimate [ppm] */
BSEC_OUTPUT_BREATH_VOC_EQUIVALENT = 4, /*!< breath VOC concentration estimate [ppm] */
/**
* @brief Temperature sensor signal [degrees Celsius]
*
* Temperature directly measured by BME680 in degree Celsius.
*
* @note This value is cross-influenced by the sensor heating and device specific heating.
*/
BSEC_OUTPUT_RAW_TEMPERATURE = 6,
/**
* @brief Pressure sensor signal [Pa]
*
* Pressure directly measured by the BME680 in Pa.
*/
BSEC_OUTPUT_RAW_PRESSURE = 7,
/**
* @brief Relative humidity sensor signal [%]
*
* Relative humidity directly measured by the BME680 in %.
*
* @note This value is cross-influenced by the sensor heating and device specific heating.
*/
BSEC_OUTPUT_RAW_HUMIDITY = 8,
/**
* @brief Gas sensor signal [Ohm]
*
* Gas resistance measured directly by the BME680 in Ohm.The resistance value changes due to varying VOC
* concentrations (the higher the concentration of reducing VOCs, the lower the resistance and vice versa).
*/
BSEC_OUTPUT_RAW_GAS = 9,
/**
* @brief Gas sensor stabilization status [boolean]
*
* Indicates initial stabilization status of the gas sensor element: stabilization is ongoing (0) or stabilization
* is finished (1).
*/
BSEC_OUTPUT_STABILIZATION_STATUS = 12,
/**
* @brief Gas sensor run-in status [boolean]
*
* Indicates power-on stabilization status of the gas sensor element: stabilization is ongoing (0) or stabilization
* is finished (1).
*/
BSEC_OUTPUT_RUN_IN_STATUS = 13,
/**
* @brief Sensor heat compensated temperature [degrees Celsius]
*
* Temperature measured by BME680 which is compensated for the influence of sensor (heater) in degree Celsius.
* The self heating introduced by the heater is depending on the sensor operation mode and the sensor supply voltage.
*
*
* @note IAQ solution: In addition, the temperature output can be compensated by an user defined value
* (::BSEC_INPUT_HEATSOURCE in degrees Celsius), which represents the device specific self-heating.
*
* Thus, the value is calculated as follows:
* * IAQ solution: ```BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = ::BSEC_INPUT_TEMPERATURE - function(sensor operation mode, sensor supply voltage) - ::BSEC_INPUT_HEATSOURCE```
* * other solutions: ```::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = ::BSEC_INPUT_TEMPERATURE - function(sensor operation mode, sensor supply voltage)```
*
* The self-heating in operation mode BSEC_SAMPLE_RATE_ULP is negligible.
* The self-heating in operation mode BSEC_SAMPLE_RATE_LP is supported for 1.8V by default (no config file required). If the BME680 sensor supply voltage is 3.3V, the IoT_LP_3_3V.config shall be used.
*/
BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = 14,
/**
* @brief Sensor heat compensated humidity [%]
*
* Relative measured by BME680 which is compensated for the influence of sensor (heater) in %.
*
* It converts the ::BSEC_INPUT_HUMIDITY from temperature ::BSEC_INPUT_TEMPERATURE to temperature
* ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE.
*
* @note IAQ solution: If ::BSEC_INPUT_HEATSOURCE is used for device specific temperature compensation, it will be
* effective for ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY too.
*/
BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY = 15,
BSEC_OUTPUT_COMPENSATED_GAS = 18, /*!< Reserved internal debug output */
BSEC_OUTPUT_GAS_PERCENTAGE = 21 /*!< percentage of min and max filtered gas value [%] */
} bsec_virtual_sensor_t;
/*!
* @brief Enumeration for function return codes
*/
typedef enum
{
BSEC_OK = 0, /*!< Function execution successful */
BSEC_E_DOSTEPS_INVALIDINPUT = -1, /*!< Input (physical) sensor id passed to bsec_do_steps() is not in the valid range or not valid for requested virtual sensor */
BSEC_E_DOSTEPS_VALUELIMITS = -2, /*!< Value of input (physical) sensor signal passed to bsec_do_steps() is not in the valid range */
BSEC_E_DOSTEPS_DUPLICATEINPUT = -6, /*!< Duplicate input (physical) sensor ids passed as input to bsec_do_steps() */
BSEC_I_DOSTEPS_NOOUTPUTSRETURNABLE = 2, /*!< No memory allocated to hold return values from bsec_do_steps(), i.e., n_outputs == 0 */
BSEC_W_DOSTEPS_EXCESSOUTPUTS = 3, /*!< Not enough memory allocated to hold return values from bsec_do_steps(), i.e., n_outputs < maximum number of requested output (virtual) sensors */
BSEC_W_DOSTEPS_TSINTRADIFFOUTOFRANGE = 4, /*!< Duplicate timestamps passed to bsec_do_steps() */
BSEC_E_SU_WRONGDATARATE = -10, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() is zero */
BSEC_E_SU_SAMPLERATELIMITS = -12, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() does not match with the sampling rate allowed for that sensor */
BSEC_E_SU_DUPLICATEGATE = -13, /*!< Duplicate output (virtual) sensor ids requested through bsec_update_subscription() */
BSEC_E_SU_INVALIDSAMPLERATE = -14, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() does not fall within the global minimum and maximum sampling rates */
BSEC_E_SU_GATECOUNTEXCEEDSARRAY = -15, /*!< Not enough memory allocated to hold returned input (physical) sensor data from bsec_update_subscription(), i.e., n_required_sensor_settings < #BSEC_MAX_PHYSICAL_SENSOR */
BSEC_E_SU_SAMPLINTVLINTEGERMULT = -16, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() is not correct */
BSEC_E_SU_MULTGASSAMPLINTVL = -17, /*!< The sample_rate of the requested output (virtual), which requires the gas sensor, is not equal to the sample_rate that the gas sensor is being operated */
BSEC_E_SU_HIGHHEATERONDURATION = -18, /*!< The duration of one measurement is longer than the requested sampling interval */
BSEC_W_SU_UNKNOWNOUTPUTGATE = 10, /*!< Output (virtual) sensor id passed to bsec_update_subscription() is not in the valid range; e.g., n_requested_virtual_sensors > actual number of output (virtual) sensors requested */
BSEC_W_SU_MODINNOULP = 11, /*!< ULP plus can not be requested in non-ulp mode */ /*MOD_ONLY*/
BSEC_I_SU_SUBSCRIBEDOUTPUTGATES = 12, /*!< No output (virtual) sensor data were requested via bsec_update_subscription() */
BSEC_E_PARSE_SECTIONEXCEEDSWORKBUFFER = -32, /*!< n_work_buffer_size passed to bsec_set_[configuration/state]() not sufficient */
BSEC_E_CONFIG_FAIL = -33, /*!< Configuration failed */
BSEC_E_CONFIG_VERSIONMISMATCH = -34, /*!< Version encoded in serialized_[settings/state] passed to bsec_set_[configuration/state]() does not match with current version */
BSEC_E_CONFIG_FEATUREMISMATCH = -35, /*!< Enabled features encoded in serialized_[settings/state] passed to bsec_set_[configuration/state]() does not match with current library implementation */
BSEC_E_CONFIG_CRCMISMATCH = -36, /*!< serialized_[settings/state] passed to bsec_set_[configuration/state]() is corrupted */
BSEC_E_CONFIG_EMPTY = -37, /*!< n_serialized_[settings/state] passed to bsec_set_[configuration/state]() is to short to be valid */
BSEC_E_CONFIG_INSUFFICIENTWORKBUFFER = -38, /*!< Provided work_buffer is not large enough to hold the desired string */
BSEC_E_CONFIG_INVALIDSTRINGSIZE = -40, /*!< String size encoded in configuration/state strings passed to bsec_set_[configuration/state]() does not match with the actual string size n_serialized_[settings/state] passed to these functions */
BSEC_E_CONFIG_INSUFFICIENTBUFFER = -41, /*!< String buffer insufficient to hold serialized data from BSEC library */
BSEC_E_SET_INVALIDCHANNELIDENTIFIER = -100, /*!< Internal error code, size of work buffer in setConfig must be set to BSEC_MAX_WORKBUFFER_SIZE */
BSEC_E_SET_INVALIDLENGTH = -104, /*!< Internal error code */
BSEC_W_SC_CALL_TIMING_VIOLATION = 100, /*!< Difference between actual and defined sampling intervals of bsec_sensor_control() greater than allowed */
BSEC_W_SC_MODEXCEEDULPTIMELIMIT = 101, /*!< ULP plus is not allowed because an ULP measurement just took or will take place */ /*MOD_ONLY*/
BSEC_W_SC_MODINSUFFICIENTWAITTIME = 102 /*!< ULP plus is not allowed because not sufficient time passed since last ULP plus */ /*MOD_ONLY*/
} bsec_library_return_t;
/*!
* @brief Structure containing the version information
*
* Please note that configuration and state strings are coded to a specific version and will not be accepted by other
* versions of BSEC.
*
*/
typedef struct
{
uint8_t major; /**< @brief Major version */
uint8_t minor; /**< @brief Minor version */
uint8_t major_bugfix; /**< @brief Major bug fix version */
uint8_t minor_bugfix; /**< @brief Minor bug fix version */
} bsec_version_t;
/*!
* @brief Structure describing an input sample to the library
*
* Each input sample is provided to BSEC as an element in a struct array of this type. Timestamps must be provided
* in nanosecond resolution. Moreover, duplicate timestamps for subsequent samples are not allowed and will results in
* an error code being returned from bsec_do_steps().
*
* The meaning unit of the signal field are determined by the bsec_input_t::sensor_id field content. Possible
* bsec_input_t::sensor_id values and and their meaning are described in ::bsec_physical_sensor_t.
*
* @sa bsec_physical_sensor_t
*
*/
typedef struct
{
/**
* @brief Time stamp in nanosecond resolution [ns]
*
* Timestamps must be provided as non-repeating and increasing values. They can have their 0-points at system start or
* at a defined wall-clock time (e.g., 01-Jan-1970 00:00:00)
*/
int64_t time_stamp;
float signal; /*!< @brief Signal sample in the unit defined for the respective sensor_id @sa bsec_physical_sensor_t */
uint8_t signal_dimensions; /*!< @brief Signal dimensions (reserved for future use, shall be set to 1) */
uint8_t sensor_id; /*!< @brief Identifier of physical sensor @sa bsec_physical_sensor_t */
} bsec_input_t;
/*!
* @brief Structure describing an output sample of the library
*
* Each output sample is returned from BSEC by populating the element of a struct array of this type. The contents of
* the signal field is defined by the supplied bsec_output_t::sensor_id. Possible output
* bsec_output_t::sensor_id values are defined in ::bsec_virtual_sensor_t.
*
* @sa bsec_virtual_sensor_t
*/
typedef struct
{
int64_t time_stamp; /*!< @brief Time stamp in nanosecond resolution as provided as input [ns] */
float signal; /*!< @brief Signal sample in the unit defined for the respective bsec_output_t::sensor_id @sa bsec_virtual_sensor_t */
uint8_t signal_dimensions; /*!< @brief Signal dimensions (reserved for future use, shall be set to 1) */
uint8_t sensor_id; /*!< @brief Identifier of virtual sensor @sa bsec_virtual_sensor_t */
/**
* @brief Accuracy status 0-3
*
* Some virtual sensors provide a value in the accuracy field. If this is the case, the meaning of the field is as
* follows:
*
* | Name | Value | Accuracy description |
* |----------------------------|-------|-------------------------------------------------------------------------------------------------------------|
* | UNRELIABLE | 0 | Stabilization / run-in ongoing |
* | LOW_ACCURACY | 1 | Low accuracy, to reach high accuracy(3), please expose sensor once to good air and bad air for autotrimming |
* | MEDIUM_ACCURACY | 2 | Medium accuracy, autotrimming ongoing |
* | HIGH_ACCURACY | 3 | High accuracy |
*
* For example:
*
* - Ambient temperature accuracy is derived from change in the temperature in 1 minute.
*
* | Virtual sensor | Value | Accuracy description |
* |--------------------- |-------|------------------------------------------------------------------------------|
* | Ambient temperature | 0 | The difference in ambient temperature is greater than 4 degree in one minute |
* | | 1 | The difference in ambient temperature is less than 4 degree in one minute |
* | | 2 | The difference in ambient temperature is less than 3 degree in one minute |
* | | 3 | The difference in ambient temperature is less than 2 degree in one minute |
*
* - IAQ accuracy indicator will notify the user when she/he should initiate a calibration process. Calibration is
* performed automatically in the background if the sensor is exposed to clean and polluted air for approximately
* 30 minutes each.
*
* | Virtual sensor | Value | Accuracy description |
* |----------------------------|-------|-----------------------------------------------------------------|
* | IAQ | 0 | The sensor is not yet stabilized or in a run-in status |
* | | 1 | Calibration required |
* | | 2 | Calibration on-going |
* | | 3 | Calibration is done, now IAQ estimate achieves best performance |
*/
uint8_t accuracy;
} bsec_output_t;
/*!
* @brief Structure describing sample rate of physical/virtual sensors
*
* This structure is used together with bsec_update_subscription() to enable BSEC outputs and to retrieve information
* about the sample rates used for BSEC inputs.
*/
typedef struct
{
/**
* @brief Sample rate of the virtual or physical sensor in Hertz [Hz]
*
* Only supported sample rates are allowed.
*/
float sample_rate;
/**
* @brief Identifier of the virtual or physical sensor
*
* The meaning of this field changes depending on whether the structs are as the requested_virtual_sensors argument
* to bsec_update_subscription() or as the required_sensor_settings argument.
*
* | bsec_update_subscription() argument | sensor_id field interpretation |
* |-------------------------------------|--------------------------------|
* | requested_virtual_sensors | ::bsec_virtual_sensor_t |
* | required_sensor_settings | ::bsec_physical_sensor_t |
*
* @sa bsec_physical_sensor_t
* @sa bsec_virtual_sensor_t
*/
uint8_t sensor_id;
} bsec_sensor_configuration_t;
/*!
* @brief Structure returned by bsec_sensor_control() to configure BMExxx sensor
*
* This structure contains settings that must be used to configure the BMExxx to perform a forced-mode measurement.
* A measurement should only be executed if bsec_bme_settings_t::trigger_measurement is 1. If so, the oversampling
* settings for temperature, humidity, and pressure should be set to the provided settings provided in
* bsec_bme_settings_t::temperature_oversampling, bsec_bme_settings_t::humidity_oversampling, and
* bsec_bme_settings_t::pressure_oversampling, respectively.
*
* In case of bsec_bme_settings_t::run_gas = 1, the gas sensor must be enabled with the provided
* bsec_bme_settings_t::heater_temperature and bsec_bme_settings_t::heating_duration settings.
*/
typedef struct
{
int64_t next_call; /*!< @brief Time stamp of the next call of the sensor_control*/
uint32_t process_data; /*!< @brief Bit field describing which data is to be passed to bsec_do_steps() @sa BSEC_PROCESS_* */
uint16_t heater_temperature; /*!< @brief Heating temperature [degrees Celsius] */
uint16_t heating_duration; /*!< @brief Heating duration [ms] */
uint8_t run_gas; /*!< @brief Enable gas measurements [0/1] */
uint8_t pressure_oversampling; /*!< @brief Pressure oversampling settings [0-5] */
uint8_t temperature_oversampling; /*!< @brief Temperature oversampling settings [0-5] */
uint8_t humidity_oversampling; /*!< @brief Humidity oversampling settings [0-5] */
uint8_t trigger_measurement; /*!< @brief Trigger a forced measurement with these settings now [0/1] */
} bsec_bme_settings_t;
/* internal defines and backward compatibility */
#define BSEC_STRUCT_NAME Bsec /*!< Internal struct name */
/*@}*/
#ifdef __cplusplus
}
#endif
#endif
/*
* Copyright (C) 2015, 2016, 2017 Robert Bosch. All Rights Reserved.
*
* Disclaimer
*
* Common:
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
* The resale and/or use of products are at the purchasers own risk and his own responsibility. The
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
*
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
* incidental, or consequential damages, arising from any product use not covered by the parameters of
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
* Sensortec for all costs in connection with such claims.
*
* The purchaser must monitor the market for the purchased products, particularly with regard to
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
*
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
* technical specifications of the product series. They are therefore not intended or fit for resale to third
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
* samples.
*
* Special:
* This software module (hereinafter called "Software") and any information on application-sheets
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
* application work. The Software and Information is subject to the following terms and conditions:
*
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
* personnel who have special experience and training. Do not use this Software if you do not have the
* proper experience or training.
*
* This Software package is provided `` as is `` and without any expressed or implied warranties,
* including without limitation, the implied warranties of merchantability and fitness for a particular
* purpose.
*
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
* otherwise stipulated in mandatory applicable law.
*
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
* responsibility for the consequences of use of such Information nor for any infringement of patents or
* other rights of third parties which may result from its use. No license is granted by implication or
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
* subject to change without notice.
*
* It is not allowed to deliver the source code of the Software to any third party without permission of
* Bosch Sensortec.
*
*/
/*!
*
* @file bsec_interface.h
*
* @brief
* Contains the API for BSEC
*
*/
#ifndef __BSEC_INTERFACE_H__
#define __BSEC_INTERFACE_H__
#include "bsec_datatypes.h"
#ifdef __cplusplus
extern "C" {
#endif
/*! @addtogroup bsec_interface BSEC C Interface
* @brief Interfaces of BSEC signal processing library
*
* ### Interface usage
*
* The following provides a short overview on the typical operation sequence for BSEC.
*
* - Initialization of the library
*
* | Steps | Function |
* |---------------------------------------------------------------------|--------------------------|
* | Initialization of library | bsec_init() |
* | Update configuration settings (optional) | bsec_set_configuration() |
* | Restore the state of the library (optional) | bsec_set_state() |
*
*
* - The following function is called to enable output signals and define their sampling rate / operation mode.
*
* | Steps | Function |
* |---------------------------------------------|----------------------------|
* | Enable library outputs with specified mode | bsec_update_subscription() |
*
*
* - This table describes the main processing loop.
*
* | Steps | Function |
* |-------------------------------------------|----------------------------------|
* | Retrieve sensor settings to be used | bsec_sensor_control() |
* | Configure sensor and trigger measurement | See BME680 API and example codes |
* | Read results from sensor | See BME680 API and example codes |
* | Perform signal processing | bsec_do_steps() |
*
*
* - Before shutting down the system, the current state of BSEC can be retrieved and can then be used during
* re-initalization to continue processing.
*
* | Steps | Function |
* |----------------------------------------|-------------------|
* | To retrieve the current library state | bsec_get_state() |
*
*
*
* ### Configuration and state
*
* Values of variables belonging to a BSEC instance are divided into two groups:
* - Values **not updated by processing** of signals belong to the **configuration group**. If available, BSEC can be
* configured before use with a customer specific configuration string.
* - Values **updated during processing** are member of the **state group**. Saving and restoring of the state of BSEC
* is necessary to maintain previously estimated sensor models and baseline information which is important for best
* performance of the gas sensor outputs.
*
* @note BSEC library consists of adaptive algorithms which models the gas sensor which improves its performance over
* the time. These will be lost if library is initialised due to system reset. In order to avoid this situation
* library state shall be stored in non volatile memory so that it can be loaded after system reset.
*
*
* @{
*/
/*!
* @brief Return the version information of BSEC library
*
* @param [out] bsec_version_p pointer to struct which is to be populated with the version information
*
* @return Zero if successful, otherwise an error code
*
* See also: bsec_version_t
*
\code{.c}
// Example //
bsec_version_t version;
bsec_get_version(&version);
printf("BSEC version: %d.%d.%d.%d",version.major, version.minor, version.major_bugfix, version.minor_bugfix);
\endcode
*/
bsec_library_return_t bsec_get_version(bsec_version_t * bsec_version_p);
/*!
* @brief Initialize the library
*
* Initialization and reset of BSEC is performed by calling bsec_init(). Calling this function sets up the relation
* among all internal modules, initializes run-time dependent library states and resets the configuration and state
* of all BSEC signal processing modules to defaults.
*
* Before any further use, the library must be initialized. This ensure that all memory and states are in defined
* conditions prior to processing any data.
*
* @return Zero if successful, otherwise an error code
*
\code{.c}
// Initialize BSEC library before further use
bsec_init();
\endcode
*/
bsec_library_return_t bsec_init(void);
/*!
* @brief Subscribe to library virtual sensors outputs
*
* Use bsec_update_subscription() to instruct BSEC which of the processed output signals are requested at which sample rates.
* See ::bsec_virtual_sensor_t for available library outputs.
*
* Based on the requested virtual sensors outputs, BSEC will provide information about the required physical sensor input signals
* (see ::bsec_physical_sensor_t) with corresponding sample rates. This information is purely informational as bsec_sensor_control()
* will ensure the sensor is operated in the required manner. To disable a virtual sensor, set the sample rate to BSEC_SAMPLE_RATE_DISABLED.
*
* The subscription update using bsec_update_subscription() is apart from the signal processing one of the the most
* important functions. It allows to enable the desired library outputs. The function determines which physical input
* sensor signals are required at which sample rate to produce the virtual output sensor signals requested by the user.
* When this function returns with success, the requested outputs are called subscribed. A very important feature is the
* retaining of already subscribed outputs. Further outputs can be requested or disabled both individually and
* group-wise in addition to already subscribed outputs without changing them unless a change of already subscribed
* outputs is requested.
*
* @note The state of the library concerning the subscribed outputs cannot be retained among reboots.
*
* The interface of bsec_update_subscription() requires the usage of arrays of sensor configuration structures.
* Such a structure has the fields sensor identifier and sample rate. These fields have the properties:
* - Output signals of virtual sensors must be requested using unique identifiers (Member of ::bsec_virtual_sensor_t)
* - Different sets of identifiers are available for inputs of physical sensors and outputs of virtual sensors
* - Identifiers are unique values defined by the library, not from external
* - Sample rates must be provided as value of
* - An allowed sample rate for continuously sampled signals
* - 65535.0f (BSEC_SAMPLE_RATE_DISABLED) to turn off outputs and identify disabled inputs
*
* @note The same sensor identifiers are also used within the functions bsec_do_steps().
*
* The usage principles of bsec_update_subscription() are:
* - Differential updates (i.e., only asking for outputs that the user would like to change) is supported.
* - Invalid requests of outputs are ignored. Also if one of the requested outputs is unavailable, all the requests
* are ignored. At the same time, a warning is returned.
* - To disable BSEC, all outputs shall be turned off. Only enabled (subscribed) outputs have to be disabled while
* already disabled outputs do not have to be disabled explicitly.
*
* @param[in] requested_virtual_sensors Pointer to array of requested virtual sensor (output) configurations for the library
* @param[in] n_requested_virtual_sensors Number of virtual sensor structs pointed by requested_virtual_sensors
* @param[out] required_sensor_settings Pointer to array of required physical sensor configurations for the library
* @param[in,out] n_required_sensor_settings [in] Size of allocated required_sensor_settings array, [out] number of sensor configurations returned
*
* @return Zero when successful, otherwise an error code
*
* @sa bsec_sensor_configuration_t
* @sa bsec_physical_sensor_t
* @sa bsec_virtual_sensor_t
*
\code{.c}
// Example //
// Change 3 virtual sensors (switch IAQ and raw temperature -> on / pressure -> off)
bsec_sensor_configuration_t requested_virtual_sensors[3];
uint8_t n_requested_virtual_sensors = 3;
requested_virtual_sensors[0].sensor_id = BSEC_OUTPUT_IAQ;
requested_virtual_sensors[0].sample_rate = BSEC_SAMPLE_RATE_ULP;
requested_virtual_sensors[1].sensor_id = BSEC_OUTPUT_RAW_TEMPERATURE;
requested_virtual_sensors[1].sample_rate = BSEC_SAMPLE_RATE_ULP;
requested_virtual_sensors[2].sensor_id = BSEC_OUTPUT_RAW_PRESSURE;
requested_virtual_sensors[2].sample_rate = BSEC_SAMPLE_RATE_DISABLED;
// Allocate a struct for the returned phyisical sensor settings
bsec_sensor_configuration_t required_sensor_settings[BSEC_MAX_PHYSICAL_SENSOR];
uint8_t n_required_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR;
// Call bsec_update_subscription() to enable/disable the requested virtual sensors
bsec_update_subscription(requested_virtual_sensors, n_requested_virtual_sensors, required_sensor_settings, &n_required_sensor_settings);
\endcode
*
*/
bsec_library_return_t bsec_update_subscription(const bsec_sensor_configuration_t * const requested_virtual_sensors,
const uint8_t n_requested_virtual_sensors, bsec_sensor_configuration_t * required_sensor_settings,
uint8_t * n_required_sensor_settings);
/*!
* @brief Main signal processing function of BSEC
*
*
* Processing of the input signals and returning of output samples is performed by bsec_do_steps().
* - The samples of all library inputs must be passed with unique identifiers representing the input signals from
* physical sensors where the order of these inputs can be chosen arbitrary. However, all input have to be provided
* within the same time period as they are read. A sequential provision to the library might result in undefined
* behaviour.
* - The samples of all library outputs are returned with unique identifiers corresponding to the output signals of
* virtual sensors where the order of the returned outputs may be arbitrary.
* - The samples of all input as well as output signals of physical as well as virtual sensors use the same
* representation in memory with the following fields:
* - Sensor identifier:
* - For inputs: required to identify the input signal from a physical sensor
* - For output: overwritten by bsec_do_steps() to identify the returned signal from a virtual sensor
* - Time stamp of the sample
*
* Calling bsec_do_steps() requires the samples of the input signals to be provided along with their time stamp when
* they are recorded and only when they are acquired. Repetition of samples with the same time stamp are ignored and
* result in a warning. Repetition of values of samples which are not acquired anew by a sensor result in deviations
* of the computed output signals. Concerning the returned output samples, an important feature is, that a value is
* returned for an output only when a new occurrence has been computed. A sample of an output signal is returned only
* once.
*
*
* @param[in] inputs Array of input data samples. Each array element represents a sample of a different physical sensor.
* @param[in] n_inputs Number of passed input data structs.
* @param[out] outputs Array of output data samples. Each array element represents a sample of a different virtual sensor.
* @param[in,out] n_outputs [in] Number of allocated output structs, [out] number of outputs returned
*
* @return Zero when successful, otherwise an error code
*
\code{.c}
// Example //
// Allocate input and output memory
bsec_input_t input[3];
uint8_t n_input = 3;
bsec_output_t output[2];
uint8_t n_output=2;
bsec_library_return_t status;
// Populate the input structs, assuming the we have timestamp (ts),
// gas sensor resistance (R), temperature (T), and humidity (rH) available
// as input variables
input[0].sensor_id = BSEC_INPUT_GASRESISTOR;
input[0].signal = R;
input[0].time_stamp= ts;
input[1].sensor_id = BSEC_INPUT_TEMPERATURE;
input[1].signal = T;
input[1].time_stamp= ts;
input[2].sensor_id = BSEC_INPUT_HUMIDITY;
input[2].signal = rH;
input[2].time_stamp= ts;
// Invoke main processing BSEC function
status = bsec_do_steps( input, n_input, output, &n_output );
// Iterature through the BSEC output data, if the call succeeded
if(status == BSEC_OK)
{
for(int i = 0; i < n_output; i++)
{
switch(output[i].sensor_id)
{
case BSEC_OUTPUT_IAQ:
// Retrieve the IAQ results from output[i].signal
// and do something with the data
break;
case BSEC_OUTPUT_AMBIENT_TEMPERATURE:
// Retrieve the ambient temperature results from output[i].signal
// and do something with the data
break;
}
}
}
\endcode
*/
bsec_library_return_t bsec_do_steps(const bsec_input_t * const inputs, const uint8_t n_inputs, bsec_output_t * outputs, uint8_t * n_outputs);
/*!
* @brief Reset a particular virtual sensor output
*
* This function allows specific virtual sensor outputs to be reset. The meaning of "reset" depends on the specific
* output. In case of the IAQ output, reset means zeroing the output to the current ambient conditions.
*
* @param[in] sensor_id Virtual sensor to be reset
*
* @return Zero when successful, otherwise an error code
*
*
\code{.c}
// Example //
bsec_reset_output(BSEC_OUTPUT_IAQ);
\endcode
*/
bsec_library_return_t bsec_reset_output(uint8_t sensor_id);
/*!
* @brief Retrieve BMExxx sensor instructions
*
* The bsec_sensor_control() interface is a key feature of BSEC, as it allows an easy way for the signal processing
* library to control the operation of the BME sensor. This is important since gas sensor behaviour is mainly
* determined by how the integrated heater is configured. To ensure an easy integration of BSEC into any system,
* bsec_sensor_control() will provide the caller with information about the current sensor configuration that is
* necessary to fulfill the input requirements derived from the current outputs requested via
* bsec_update_subscription().
*
* In practice the use of this function shall be as follows:
* - Call bsec_sensor_control() which returns a bsec_bme_settings_t struct.
* - Based on the information contained in this struct, the sensor is configured and a forced-mode measurement is
* triggered if requested by bsec_sensor_control().
* - Once this forced-mode measurement is complete, the signals specified in this struct shall be passed to
* bsec_do_steps() to perform the signal processing.
* - After processing, the process should sleep until the bsec_bme_settings_t::next_call timestamp is reached.
*
*
* @param [in] time_stamp Current timestamp in [ns]
* @param[out] sensor_settings Settings to be passed to API to operate sensor at this time instance
*
* @return Zero when successful, otherwise an error code
*/
bsec_library_return_t bsec_sensor_control(const int64_t time_stamp, bsec_bme_settings_t *sensor_settings);
/*@}*/ //BSEC Interface
#ifdef __cplusplus
}
#endif
#endif /* __BSEC_INTERFACE_H__ */