Skip to content
Snippets Groups Projects
Select Git revision
  • bdd77470739bdb23944ac3940184a70c14fbcc95
  • master default protected
  • add_menu_vibration
  • genofire/ble-follow-py
  • schneider/standby
  • plaetzchen/ios-workaround
  • blinkisync-as-preload
  • schneider/max30001-pycardium
  • schneider/max30001-epicaridum
  • schneider/max30001
  • schneider/stream-locks
  • schneider/fundamental-test
  • schneider/ble-buffers
  • schneider/maxim-sdk-update
  • ch3/splashscreen
  • koalo/bhi160-works-but-dirty
  • koalo/wip/i2c-for-python
  • renze/safe_mode
  • renze/hatchery_apps
  • koalo/factory-reset
  • msgctl/gfx_rle
  • v1.10
  • v1.9
  • v1.8
  • v1.7
  • v1.6
  • v1.5
  • v1.4
  • v1.3
  • v1.2
  • v1.1
  • v1.0
  • release-1
  • bootloader-v1
  • v0.0
35 results

nvic_table.c

Blame
  • Forked from card10 / firmware
    Source project has a limited visibility.
    asmx86.c 20.90 KiB
    /*
     * This file is part of the Micro Python project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2014 Damien P. George
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <stdint.h>
    #include <stdio.h>
    #include <assert.h>
    #include <string.h>
    
    #include "py/mpconfig.h"
    
    // wrapper around everything in this file
    #if MICROPY_EMIT_X86
    
    #include "py/asmx86.h"
    
    /* all offsets are measured in multiples of 4 bytes */
    #define WORD_SIZE                (4)
    
    #define OPCODE_NOP               (0x90)
    #define OPCODE_PUSH_R32          (0x50)
    //#define OPCODE_PUSH_I32          (0x68)
    //#define OPCODE_PUSH_M32          (0xff) /* /6 */
    #define OPCODE_POP_R32           (0x58)
    #define OPCODE_RET               (0xc3)
    //#define OPCODE_MOV_I8_TO_R8      (0xb0) /* +rb */
    #define OPCODE_MOV_I32_TO_R32    (0xb8)
    //#define OPCODE_MOV_I32_TO_RM32   (0xc7)
    #define OPCODE_MOV_R8_TO_RM8     (0x88) /* /r */
    #define OPCODE_MOV_R32_TO_RM32   (0x89) /* /r */
    #define OPCODE_MOV_RM32_TO_R32   (0x8b) /* /r */
    #define OPCODE_MOVZX_RM8_TO_R32  (0xb6) /* 0x0f 0xb6/r */
    #define OPCODE_MOVZX_RM16_TO_R32 (0xb7) /* 0x0f 0xb7/r */
    #define OPCODE_LEA_MEM_TO_R32    (0x8d) /* /r */
    #define OPCODE_AND_R32_TO_RM32   (0x21) /* /r */
    #define OPCODE_OR_R32_TO_RM32    (0x09) /* /r */
    #define OPCODE_XOR_R32_TO_RM32   (0x31) /* /r */
    #define OPCODE_ADD_R32_TO_RM32   (0x01)
    #define OPCODE_ADD_I32_TO_RM32   (0x81) /* /0 */
    #define OPCODE_ADD_I8_TO_RM32    (0x83) /* /0 */
    #define OPCODE_SUB_R32_FROM_RM32 (0x29)
    #define OPCODE_SUB_I32_FROM_RM32 (0x81) /* /5 */
    #define OPCODE_SUB_I8_FROM_RM32  (0x83) /* /5 */
    //#define OPCODE_SHL_RM32_BY_I8    (0xc1) /* /4 */
    //#define OPCODE_SHR_RM32_BY_I8    (0xc1) /* /5 */
    //#define OPCODE_SAR_RM32_BY_I8    (0xc1) /* /7 */
    #define OPCODE_SHL_RM32_CL       (0xd3) /* /4 */
    #define OPCODE_SAR_RM32_CL       (0xd3) /* /7 */
    //#define OPCODE_CMP_I32_WITH_RM32 (0x81) /* /7 */
    //#define OPCODE_CMP_I8_WITH_RM32  (0x83) /* /7 */
    #define OPCODE_CMP_R32_WITH_RM32 (0x39)
    //#define OPCODE_CMP_RM32_WITH_R32 (0x3b)
    #define OPCODE_TEST_R8_WITH_RM8  (0x84) /* /r */
    #define OPCODE_JMP_REL8          (0xeb)
    #define OPCODE_JMP_REL32         (0xe9)
    #define OPCODE_JCC_REL8          (0x70) /* | jcc type */
    #define OPCODE_JCC_REL32_A       (0x0f)
    #define OPCODE_JCC_REL32_B       (0x80) /* | jcc type */
    #define OPCODE_SETCC_RM8_A       (0x0f)
    #define OPCODE_SETCC_RM8_B       (0x90) /* | jcc type, /0 */
    #define OPCODE_CALL_REL32        (0xe8)
    #define OPCODE_CALL_RM32         (0xff) /* /2 */
    #define OPCODE_LEAVE             (0xc9)
    
    #define MODRM_R32(x)    ((x) << 3)
    #define MODRM_RM_DISP0  (0x00)
    #define MODRM_RM_DISP8  (0x40)
    #define MODRM_RM_DISP32 (0x80)
    #define MODRM_RM_REG    (0xc0)
    #define MODRM_RM_R32(x) (x)
    
    #define OP_SIZE_PREFIX (0x66)
    
    #define IMM32_L0(x) ((x) & 0xff)
    #define IMM32_L1(x) (((x) >> 8) & 0xff)
    #define IMM32_L2(x) (((x) >> 16) & 0xff)
    #define IMM32_L3(x) (((x) >> 24) & 0xff)
    
    #define SIGNED_FIT8(x) (((x) & 0xffffff80) == 0) || (((x) & 0xffffff80) == 0xffffff80)
    
    struct _asm_x86_t {
        uint pass;
        mp_uint_t code_offset;
        mp_uint_t code_size;
        byte *code_base;
        byte dummy_data[8];
    
        mp_uint_t max_num_labels;
        mp_uint_t *label_offsets;
        int num_locals;
    };
    
    asm_x86_t *asm_x86_new(mp_uint_t max_num_labels) {
        asm_x86_t *as;
    
        as = m_new0(asm_x86_t, 1);
        as->max_num_labels = max_num_labels;
        as->label_offsets = m_new(mp_uint_t, max_num_labels);
    
        return as;
    }
    
    void asm_x86_free(asm_x86_t *as, bool free_code) {
        if (free_code) {
            MP_PLAT_FREE_EXEC(as->code_base, as->code_size);
        }
        m_del(mp_uint_t, as->label_offsets, as->max_num_labels);
        m_del_obj(asm_x86_t, as);
    }
    
    void asm_x86_start_pass(asm_x86_t *as, mp_uint_t pass) {
        if (pass == ASM_X86_PASS_COMPUTE) {
            // reset all labels
            memset(as->label_offsets, -1, as->max_num_labels * sizeof(mp_uint_t));
        } else if (pass == ASM_X86_PASS_EMIT) {
            MP_PLAT_ALLOC_EXEC(as->code_offset, (void**)&as->code_base, &as->code_size);
            if (as->code_base == NULL) {
                assert(0);
            }
        }
        as->pass = pass;
        as->code_offset = 0;
    }
    
    void asm_x86_end_pass(asm_x86_t *as) {
        (void)as;
    }
    
    // all functions must go through this one to emit bytes
    STATIC byte *asm_x86_get_cur_to_write_bytes(asm_x86_t *as, int num_bytes_to_write) {
        //printf("emit %d\n", num_bytes_to_write);
        if (as->pass < ASM_X86_PASS_EMIT) {
            as->code_offset += num_bytes_to_write;
            return as->dummy_data;
        } else {
            assert(as->code_offset + num_bytes_to_write <= as->code_size);
            byte *c = as->code_base + as->code_offset;
            as->code_offset += num_bytes_to_write;
            return c;
        }
    }
    
    mp_uint_t asm_x86_get_code_pos(asm_x86_t *as) {
        return as->code_offset;
    }
    
    mp_uint_t asm_x86_get_code_size(asm_x86_t *as) {
        return as->code_size;
    }
    
    void *asm_x86_get_code(asm_x86_t *as) {
        return as->code_base;
    }
    
    STATIC void asm_x86_write_byte_1(asm_x86_t *as, byte b1) {
        byte* c = asm_x86_get_cur_to_write_bytes(as, 1);
        c[0] = b1;
    }
    
    STATIC void asm_x86_write_byte_2(asm_x86_t *as, byte b1, byte b2) {
        byte* c = asm_x86_get_cur_to_write_bytes(as, 2);
        c[0] = b1;
        c[1] = b2;
    }
    
    STATIC void asm_x86_write_byte_3(asm_x86_t *as, byte b1, byte b2, byte b3) {
        byte* c = asm_x86_get_cur_to_write_bytes(as, 3);
        c[0] = b1;
        c[1] = b2;
        c[2] = b3;
    }
    
    STATIC void asm_x86_write_word32(asm_x86_t *as, int w32) {
        byte* c = asm_x86_get_cur_to_write_bytes(as, 4);
        c[0] = IMM32_L0(w32);
        c[1] = IMM32_L1(w32);
        c[2] = IMM32_L2(w32);
        c[3] = IMM32_L3(w32);
    }
    
    // align must be a multiple of 2
    void asm_x86_align(asm_x86_t* as, mp_uint_t align) {
        // TODO fill unused data with NOPs?
        as->code_offset = (as->code_offset + align - 1) & (~(align - 1));
    }
    
    void asm_x86_data(asm_x86_t* as, mp_uint_t bytesize, mp_uint_t val) {
        byte *c = asm_x86_get_cur_to_write_bytes(as, bytesize);
        // machine is little endian
        for (uint i = 0; i < bytesize; i++) {
            *c++ = val;
            val >>= 8;
        }
    }
    
    STATIC void asm_x86_write_r32_disp(asm_x86_t *as, int r32, int disp_r32, int disp_offset) {
        assert(disp_r32 != ASM_X86_REG_ESP);
    
        if (disp_offset == 0 && disp_r32 != ASM_X86_REG_EBP) {
            asm_x86_write_byte_1(as, MODRM_R32(r32) | MODRM_RM_DISP0 | MODRM_RM_R32(disp_r32));
        } else if (SIGNED_FIT8(disp_offset)) {
            asm_x86_write_byte_2(as, MODRM_R32(r32) | MODRM_RM_DISP8 | MODRM_RM_R32(disp_r32), IMM32_L0(disp_offset));
        } else {
            asm_x86_write_byte_1(as, MODRM_R32(r32) | MODRM_RM_DISP32 | MODRM_RM_R32(disp_r32));
            asm_x86_write_word32(as, disp_offset);
        }
    }
    
    STATIC void asm_x86_generic_r32_r32(asm_x86_t *as, int dest_r32, int src_r32, int op) {
        asm_x86_write_byte_2(as, op, MODRM_R32(src_r32) | MODRM_RM_REG | MODRM_RM_R32(dest_r32));
    }
    
    STATIC void asm_x86_nop(asm_x86_t *as) {
        asm_x86_write_byte_1(as, OPCODE_NOP);
    }
    
    STATIC void asm_x86_push_r32(asm_x86_t *as, int src_r32) {
        asm_x86_write_byte_1(as, OPCODE_PUSH_R32 | src_r32);
    }
    
    #if 0
    void asm_x86_push_i32(asm_x86_t *as, int src_i32) {
        asm_x86_write_byte_1(as, OPCODE_PUSH_I32);
        asm_x86_write_word32(as, src_i32);
    }
    
    void asm_x86_push_disp(asm_x86_t *as, int src_r32, int src_offset) {
        asm_x86_write_byte_1(as, OPCODE_PUSH_M32);
        asm_x86_write_r32_disp(as, 6, src_r32, src_offset);
    }
    #endif
    
    STATIC void asm_x86_pop_r32(asm_x86_t *as, int dest_r32) {
        asm_x86_write_byte_1(as, OPCODE_POP_R32 | dest_r32);
    }
    
    STATIC void asm_x86_ret(asm_x86_t *as) {
        asm_x86_write_byte_1(as, OPCODE_RET);
    }
    
    void asm_x86_mov_r32_r32(asm_x86_t *as, int dest_r32, int src_r32) {
        asm_x86_generic_r32_r32(as, dest_r32, src_r32, OPCODE_MOV_R32_TO_RM32);
    }
    
    void asm_x86_mov_r8_to_mem8(asm_x86_t *as, int src_r32, int dest_r32, int dest_disp) {
        asm_x86_write_byte_1(as, OPCODE_MOV_R8_TO_RM8);
        asm_x86_write_r32_disp(as, src_r32, dest_r32, dest_disp);
    }
    
    void asm_x86_mov_r16_to_mem16(asm_x86_t *as, int src_r32, int dest_r32, int dest_disp) {
        asm_x86_write_byte_2(as, OP_SIZE_PREFIX, OPCODE_MOV_R32_TO_RM32);
        asm_x86_write_r32_disp(as, src_r32, dest_r32, dest_disp);
    }
    
    void asm_x86_mov_r32_to_mem32(asm_x86_t *as, int src_r32, int dest_r32, int dest_disp) {
        asm_x86_write_byte_1(as, OPCODE_MOV_R32_TO_RM32);
        asm_x86_write_r32_disp(as, src_r32, dest_r32, dest_disp);
    }
    
    void asm_x86_mov_mem8_to_r32zx(asm_x86_t *as, int src_r32, int src_disp, int dest_r32) {
        asm_x86_write_byte_2(as, 0x0f, OPCODE_MOVZX_RM8_TO_R32);
        asm_x86_write_r32_disp(as, dest_r32, src_r32, src_disp);
    }
    
    void asm_x86_mov_mem16_to_r32zx(asm_x86_t *as, int src_r32, int src_disp, int dest_r32) {
        asm_x86_write_byte_2(as, 0x0f, OPCODE_MOVZX_RM16_TO_R32);
        asm_x86_write_r32_disp(as, dest_r32, src_r32, src_disp);
    }
    
    void asm_x86_mov_mem32_to_r32(asm_x86_t *as, int src_r32, int src_disp, int dest_r32) {
        asm_x86_write_byte_1(as, OPCODE_MOV_RM32_TO_R32);
        asm_x86_write_r32_disp(as, dest_r32, src_r32, src_disp);
    }
    
    STATIC void asm_x86_lea_disp_to_r32(asm_x86_t *as, int src_r32, int src_disp, int dest_r32) {
        asm_x86_write_byte_1(as, OPCODE_LEA_MEM_TO_R32);
        asm_x86_write_r32_disp(as, dest_r32, src_r32, src_disp);
    }
    
    #if 0
    void asm_x86_mov_i8_to_r8(asm_x86_t *as, int src_i8, int dest_r32) {
        asm_x86_write_byte_2(as, OPCODE_MOV_I8_TO_R8 | dest_r32, src_i8);
    }
    #endif
    
    void asm_x86_mov_i32_to_r32(asm_x86_t *as, int32_t src_i32, int dest_r32) {
        asm_x86_write_byte_1(as, OPCODE_MOV_I32_TO_R32 | dest_r32);
        asm_x86_write_word32(as, src_i32);
    }
    
    // src_i32 is stored as a full word in the code, and aligned to machine-word boundary
    void asm_x86_mov_i32_to_r32_aligned(asm_x86_t *as, int32_t src_i32, int dest_r32) {
        // mov instruction uses 1 byte for the instruction, before the i32
        while (((as->code_offset + 1) & (WORD_SIZE - 1)) != 0) {
            asm_x86_nop(as);
        }
        asm_x86_mov_i32_to_r32(as, src_i32, dest_r32);
    }
    
    void asm_x86_and_r32_r32(asm_x86_t *as, int dest_r32, int src_r32) {
        asm_x86_generic_r32_r32(as, dest_r32, src_r32, OPCODE_AND_R32_TO_RM32);
    }
    
    void asm_x86_or_r32_r32(asm_x86_t *as, int dest_r32, int src_r32) {
        asm_x86_generic_r32_r32(as, dest_r32, src_r32, OPCODE_OR_R32_TO_RM32);
    }
    
    void asm_x86_xor_r32_r32(asm_x86_t *as, int dest_r32, int src_r32) {
        asm_x86_generic_r32_r32(as, dest_r32, src_r32, OPCODE_XOR_R32_TO_RM32);
    }
    
    void asm_x86_shl_r32_cl(asm_x86_t* as, int dest_r32) {
        asm_x86_generic_r32_r32(as, dest_r32, 4, OPCODE_SHL_RM32_CL);
    }
    
    void asm_x86_sar_r32_cl(asm_x86_t* as, int dest_r32) {
        asm_x86_generic_r32_r32(as, dest_r32, 7, OPCODE_SAR_RM32_CL);
    }
    
    void asm_x86_add_r32_r32(asm_x86_t *as, int dest_r32, int src_r32) {
        asm_x86_generic_r32_r32(as, dest_r32, src_r32, OPCODE_ADD_R32_TO_RM32);
    }
    
    STATIC void asm_x86_add_i32_to_r32(asm_x86_t *as, int src_i32, int dest_r32) {
        if (SIGNED_FIT8(src_i32)) {
            asm_x86_write_byte_2(as, OPCODE_ADD_I8_TO_RM32, MODRM_R32(0) | MODRM_RM_REG | MODRM_RM_R32(dest_r32));
            asm_x86_write_byte_1(as, src_i32 & 0xff);
        } else {
            asm_x86_write_byte_2(as, OPCODE_ADD_I32_TO_RM32, MODRM_R32(0) | MODRM_RM_REG | MODRM_RM_R32(dest_r32));
            asm_x86_write_word32(as, src_i32);
        }
    }
    
    void asm_x86_sub_r32_r32(asm_x86_t *as, int dest_r32, int src_r32) {
        asm_x86_generic_r32_r32(as, dest_r32, src_r32, OPCODE_SUB_R32_FROM_RM32);
    }
    
    STATIC void asm_x86_sub_r32_i32(asm_x86_t *as, int dest_r32, int src_i32) {
        if (SIGNED_FIT8(src_i32)) {
            // defaults to 32 bit operation
            asm_x86_write_byte_2(as, OPCODE_SUB_I8_FROM_RM32, MODRM_R32(5) | MODRM_RM_REG | MODRM_RM_R32(dest_r32));
            asm_x86_write_byte_1(as, src_i32 & 0xff);
        } else {
            // defaults to 32 bit operation
            asm_x86_write_byte_2(as, OPCODE_SUB_I32_FROM_RM32, MODRM_R32(5) | MODRM_RM_REG | MODRM_RM_R32(dest_r32));
            asm_x86_write_word32(as, src_i32);
        }
    }
    
    void asm_x86_mul_r32_r32(asm_x86_t *as, int dest_r32, int src_r32) {
        // imul reg32, reg/mem32 -- 0x0f 0xaf /r
        asm_x86_write_byte_3(as, 0x0f, 0xaf, MODRM_R32(dest_r32) | MODRM_RM_REG | MODRM_RM_R32(src_r32));
    }
    
    #if 0
    /* shifts not tested */
    void asm_x86_shl_r32_by_imm(asm_x86_t *as, int r32, int imm) {
        asm_x86_write_byte_2(as, OPCODE_SHL_RM32_BY_I8, MODRM_R32(4) | MODRM_RM_REG | MODRM_RM_R32(r32));
        asm_x86_write_byte_1(as, imm);
    }
    
    void asm_x86_shr_r32_by_imm(asm_x86_t *as, int r32, int imm) {
        asm_x86_write_byte_2(as, OPCODE_SHR_RM32_BY_I8, MODRM_R32(5) | MODRM_RM_REG | MODRM_RM_R32(r32));
        asm_x86_write_byte_1(as, imm);
    }
    
    void asm_x86_sar_r32_by_imm(asm_x86_t *as, int r32, int imm) {
        asm_x86_write_byte_2(as, OPCODE_SAR_RM32_BY_I8, MODRM_R32(7) | MODRM_RM_REG | MODRM_RM_R32(r32));
        asm_x86_write_byte_1(as, imm);
    }
    #endif
    
    void asm_x86_cmp_r32_with_r32(asm_x86_t *as, int src_r32_a, int src_r32_b) {
        asm_x86_write_byte_2(as, OPCODE_CMP_R32_WITH_RM32, MODRM_R32(src_r32_a) | MODRM_RM_REG | MODRM_RM_R32(src_r32_b));
    }
    
    #if 0
    void asm_x86_cmp_i32_with_r32(asm_x86_t *as, int src_i32, int src_r32) {
        if (SIGNED_FIT8(src_i32)) {
            asm_x86_write_byte_2(as, OPCODE_CMP_I8_WITH_RM32, MODRM_R32(7) | MODRM_RM_REG | MODRM_RM_R32(src_r32));
            asm_x86_write_byte_1(as, src_i32 & 0xff);
        } else {
            asm_x86_write_byte_2(as, OPCODE_CMP_I32_WITH_RM32, MODRM_R32(7) | MODRM_RM_REG | MODRM_RM_R32(src_r32));
            asm_x86_write_word32(as, src_i32);
        }
    }
    #endif
    
    void asm_x86_test_r8_with_r8(asm_x86_t *as, int src_r32_a, int src_r32_b) {
        // TODO implement for other registers
        assert(src_r32_a == ASM_X86_REG_EAX);
        assert(src_r32_b == ASM_X86_REG_EAX);
        asm_x86_write_byte_2(as, OPCODE_TEST_R8_WITH_RM8, MODRM_R32(src_r32_a) | MODRM_RM_REG | MODRM_RM_R32(src_r32_b));
    }
    
    void asm_x86_setcc_r8(asm_x86_t *as, mp_uint_t jcc_type, int dest_r8) {
        asm_x86_write_byte_3(as, OPCODE_SETCC_RM8_A, OPCODE_SETCC_RM8_B | jcc_type, MODRM_R32(0) | MODRM_RM_REG | MODRM_RM_R32(dest_r8));
    }
    
    void asm_x86_label_assign(asm_x86_t *as, mp_uint_t label) {
        assert(label < as->max_num_labels);
        if (as->pass < ASM_X86_PASS_EMIT) {
            // assign label offset
            assert(as->label_offsets[label] == (mp_uint_t)-1);
            as->label_offsets[label] = as->code_offset;
        } else {
            // ensure label offset has not changed from PASS_COMPUTE to PASS_EMIT
            //printf("l%d: (at %d=%ld)\n", label, as->label_offsets[label], as->code_offset);
            assert(as->label_offsets[label] == as->code_offset);
        }
    }
    
    STATIC mp_uint_t get_label_dest(asm_x86_t *as, mp_uint_t label) {
        assert(label < as->max_num_labels);
        return as->label_offsets[label];
    }
    
    void asm_x86_jmp_label(asm_x86_t *as, mp_uint_t label) {
        mp_uint_t dest = get_label_dest(as, label);
        mp_int_t rel = dest - as->code_offset;
        if (dest != (mp_uint_t)-1 && rel < 0) {
            // is a backwards jump, so we know the size of the jump on the first pass
            // calculate rel assuming 8 bit relative jump
            rel -= 2;
            if (SIGNED_FIT8(rel)) {
                asm_x86_write_byte_2(as, OPCODE_JMP_REL8, rel & 0xff);
            } else {
                rel += 2;
                goto large_jump;
            }
        } else {
            // is a forwards jump, so need to assume it's large
            large_jump:
            rel -= 5;
            asm_x86_write_byte_1(as, OPCODE_JMP_REL32);
            asm_x86_write_word32(as, rel);
        }
    }
    
    void asm_x86_jcc_label(asm_x86_t *as, mp_uint_t jcc_type, mp_uint_t label) {
        mp_uint_t dest = get_label_dest(as, label);
        mp_int_t rel = dest - as->code_offset;
        if (dest != (mp_uint_t)-1 && rel < 0) {
            // is a backwards jump, so we know the size of the jump on the first pass
            // calculate rel assuming 8 bit relative jump
            rel -= 2;
            if (SIGNED_FIT8(rel)) {
                asm_x86_write_byte_2(as, OPCODE_JCC_REL8 | jcc_type, rel & 0xff);
            } else {
                rel += 2;
                goto large_jump;
            }
        } else {
            // is a forwards jump, so need to assume it's large
            large_jump:
            rel -= 6;
            asm_x86_write_byte_2(as, OPCODE_JCC_REL32_A, OPCODE_JCC_REL32_B | jcc_type);
            asm_x86_write_word32(as, rel);
        }
    }
    
    void asm_x86_entry(asm_x86_t *as, mp_uint_t num_locals) {
        asm_x86_push_r32(as, ASM_X86_REG_EBP);
        asm_x86_mov_r32_r32(as, ASM_X86_REG_EBP, ASM_X86_REG_ESP);
        if (num_locals > 0) {
            asm_x86_sub_r32_i32(as, ASM_X86_REG_ESP, num_locals * WORD_SIZE);
        }
        asm_x86_push_r32(as, ASM_X86_REG_EBX);
        asm_x86_push_r32(as, ASM_X86_REG_ESI);
        asm_x86_push_r32(as, ASM_X86_REG_EDI);
        // TODO align stack on 16-byte boundary
        as->num_locals = num_locals;
    }
    
    void asm_x86_exit(asm_x86_t *as) {
        asm_x86_pop_r32(as, ASM_X86_REG_EDI);
        asm_x86_pop_r32(as, ASM_X86_REG_ESI);
        asm_x86_pop_r32(as, ASM_X86_REG_EBX);
        asm_x86_write_byte_1(as, OPCODE_LEAVE);
        asm_x86_ret(as);
    }
    
    #if 0
    void asm_x86_push_arg(asm_x86_t *as, int src_arg_num) {
        asm_x86_push_disp(as, ASM_X86_REG_EBP, 2 * WORD_SIZE + src_arg_num * WORD_SIZE);
    }
    #endif
    
    void asm_x86_mov_arg_to_r32(asm_x86_t *as, int src_arg_num, int dest_r32) {
        asm_x86_mov_mem32_to_r32(as, ASM_X86_REG_EBP, 2 * WORD_SIZE + src_arg_num * WORD_SIZE, dest_r32);
    }
    
    #if 0
    void asm_x86_mov_r32_to_arg(asm_x86_t *as, int src_r32, int dest_arg_num) {
        asm_x86_mov_r32_to_mem32(as, src_r32, ASM_X86_REG_EBP, 2 * WORD_SIZE + dest_arg_num * WORD_SIZE);
    }
    #endif
    
    // locals:
    //  - stored on the stack in ascending order
    //  - numbered 0 through as->num_locals-1
    //  - EBP points above the last local
    //
    //                          | EBP
    //                          v
    //  l0  l1  l2  ...  l(n-1)
    //  ^                ^
    //  | low address    | high address in RAM
    //
    STATIC int asm_x86_local_offset_from_ebp(asm_x86_t *as, int local_num) {
        return (-as->num_locals + local_num) * WORD_SIZE;
    }
    
    void asm_x86_mov_local_to_r32(asm_x86_t *as, int src_local_num, int dest_r32) {
        asm_x86_mov_mem32_to_r32(as, ASM_X86_REG_EBP, asm_x86_local_offset_from_ebp(as, src_local_num), dest_r32);
    }
    
    void asm_x86_mov_r32_to_local(asm_x86_t *as, int src_r32, int dest_local_num) {
        asm_x86_mov_r32_to_mem32(as, src_r32, ASM_X86_REG_EBP, asm_x86_local_offset_from_ebp(as, dest_local_num));
    }
    
    void asm_x86_mov_local_addr_to_r32(asm_x86_t *as, int local_num, int dest_r32) {
        int offset = asm_x86_local_offset_from_ebp(as, local_num);
        if (offset == 0) {
            asm_x86_mov_r32_r32(as, dest_r32, ASM_X86_REG_EBP);
        } else {
            asm_x86_lea_disp_to_r32(as, ASM_X86_REG_EBP, offset, dest_r32);
        }
    }
    
    #if 0
    void asm_x86_push_local(asm_x86_t *as, int local_num) {
        asm_x86_push_disp(as, ASM_X86_REG_EBP, asm_x86_local_offset_from_ebp(as, local_num));
    }
    
    void asm_x86_push_local_addr(asm_x86_t *as, int local_num, int temp_r32)
    {
        asm_x86_mov_r32_r32(as, temp_r32, ASM_X86_REG_EBP);
        asm_x86_add_i32_to_r32(as, asm_x86_local_offset_from_ebp(as, local_num), temp_r32);
        asm_x86_push_r32(as, temp_r32);
    }
    #endif
    
    void asm_x86_call_ind(asm_x86_t *as, void *ptr, mp_uint_t n_args, int temp_r32) {
        // TODO align stack on 16-byte boundary before the call
        assert(n_args <= 5);
        if (n_args > 4) {
            asm_x86_push_r32(as, ASM_X86_REG_ARG_5);
        }
        if (n_args > 3) {
            asm_x86_push_r32(as, ASM_X86_REG_ARG_4);
        }
        if (n_args > 2) {
            asm_x86_push_r32(as, ASM_X86_REG_ARG_3);
        }
        if (n_args > 1) {
            asm_x86_push_r32(as, ASM_X86_REG_ARG_2);
        }
        if (n_args > 0) {
            asm_x86_push_r32(as, ASM_X86_REG_ARG_1);
        }
    #ifdef __LP64__
        // We wouldn't run x86 code on an x64 machine.  This is here to enable
        // testing of the x86 emitter only.
        asm_x86_mov_i32_to_r32(as, (int32_t)(int64_t)ptr, temp_r32);
    #else
        // If we get here, sizeof(int) == sizeof(void*).
        asm_x86_mov_i32_to_r32(as, (int32_t)ptr, temp_r32);
    #endif
        asm_x86_write_byte_2(as, OPCODE_CALL_RM32, MODRM_R32(2) | MODRM_RM_REG | MODRM_RM_R32(temp_r32));
        // this reduces code size by 2 bytes per call, but doesn't seem to speed it up at all
        /*
        asm_x86_write_byte_1(as, OPCODE_CALL_REL32);
        asm_x86_write_word32(as, ptr - (void*)(as->code_base + as->code_offset + 4));
        */
    
        // the caller must clean up the stack
        if (n_args > 0) {
            asm_x86_add_i32_to_r32(as, WORD_SIZE * n_args, ASM_X86_REG_ESP);
        }
    }
    
    #endif // MICROPY_EMIT_X86