Skip to content
Snippets Groups Projects
Select Git revision
  • 1f89a75f313bc61f2bb2906fcc871ffc0170bea3
  • master default protected
  • add-joust
  • blinkisync-as-preload
  • genofire/rockets-state
  • genofire/leds_rgb_get_state
  • genofire/ble-follow-py
  • genofire/haule-ble-fs-deactive
  • hauke/ble-cleanups
  • plaetzchen/ios-workaround
  • schneider/max30001-pycardium
  • schneider/max30001-epicaridum
  • schneider/max30001
  • schneider/stream-locks
  • ios-workarounds
  • schneider/fundamental-test
  • schneider/ble-buffers
  • schneider/maxim-sdk-update
  • rahix/simple_menu
  • ch3/splashscreen
  • koalo/bhi160-works-but-dirty
  • v1.7
  • v1.6
  • v1.5
  • v1.4
  • v1.3
  • v1.2
  • v1.1
  • v1.0
  • release-1
  • bootloader-v1
  • v0.0
32 results

max30001.c

Blame
  • Forked from card10 / firmware
    Source project has a limited visibility.
    main.c 9.46 KiB
    #include <stdint.h>
    #include <stdio.h>
    #include <string.h>
    #include <stdlib.h>
    
    #include "mpconfig.h"
    #include "misc.h"
    #include "qstr.h"
    #include "nlr.h"
    #include "lexer.h"
    #include "lexermemzip.h"
    #include "parse.h"
    #include "obj.h"
    #include "runtime.h"
    #include "gc.h"
    #include "gccollect.h"
    #include "pyexec.h"
    #include "readline.h"
    
    #include "Arduino.h"
    #include MICROPY_HAL_H
    
    #include "servo.h"
    #include "usb.h"
    #include "led.h"
    #include "uart.h"
    //#include "pin.h"
    #include "pybstdio.h"
    
    
    extern uint32_t _heap_start;
    
    void flash_error(int n) {
        for (int i = 0; i < n; i++) {
            led_state(PYB_LED_BUILTIN, 1);
            delay(250);
            led_state(PYB_LED_BUILTIN, 0);
            delay(250);
        }
    }
    
    void NORETURN __fatal_error(const char *msg) {
        for (volatile uint delay = 0; delay < 10000000; delay++) {
        }
        led_state(1, 1);
        led_state(2, 1);
        led_state(3, 1);
        led_state(4, 1);
        stdout_tx_strn("\nFATAL ERROR:\n", 14);
        stdout_tx_strn(msg, strlen(msg));
        for (uint i = 0;;) {
            led_toggle(((i++) & 3) + 1);
            for (volatile uint delay = 0; delay < 10000000; delay++) {
            }
            if (i >= 16) {
                // to conserve power
                __WFI();
            }
        }
    }
    
    void nlr_jump_fail(void *val) {
        printf("FATAL: uncaught exception %p\n", val);
        __fatal_error("");
    }
    
    void __assert_func(const char *file, int line, const char *func, const char *expr) {
    
        printf("Assertion failed: %s, file %s, line %d\n", expr, file, line);
        __fatal_error("");
    }
    
    mp_obj_t pyb_analog_read(mp_obj_t pin_obj) {
        uint pin = mp_obj_get_int(pin_obj);
        int val = analogRead(pin);
        return MP_OBJ_NEW_SMALL_INT(val);
    }
    
    mp_obj_t pyb_analog_write(mp_obj_t pin_obj, mp_obj_t val_obj) {
        uint pin = mp_obj_get_int(pin_obj);
        int val = mp_obj_get_int(val_obj);
        analogWrite(pin, val);
        return mp_const_none;
    }
    
    mp_obj_t pyb_analog_write_resolution(mp_obj_t res_obj) {
        int res = mp_obj_get_int(res_obj);
        analogWriteResolution(res);
        return mp_const_none;
    }
    
    mp_obj_t pyb_analog_write_frequency(mp_obj_t pin_obj, mp_obj_t freq_obj) {
        uint pin = mp_obj_get_int(pin_obj);
        int freq = mp_obj_get_int(freq_obj);
        analogWriteFrequency(pin, freq);
        return mp_const_none;
    }
    
    #if 0
    // get lots of info about the board
    static mp_obj_t pyb_info(void) {
        // get and print unique id; 96 bits
        {
            byte *id = (byte*)0x40048058;
            printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
        }
    
        // get and print clock speeds
        printf("CPU=%u\nBUS=%u\nMEM=%u\n", F_CPU, F_BUS, F_MEM);
    
        // to print info about memory
        {
            printf("_sdata=%p\n", &_sdata);
            printf("_edata=%p\n", &_edata);
            printf("_sbss=%p\n", &_sbss);
            printf("_ebss=%p\n", &_ebss);
            printf("_estack=%p\n", &_estack);
            printf("_etext=%p\n", &_etext);
            printf("_heap_start=%p\n", &_heap_start);
        }
    
        // GC info
        {
            gc_info_t info;
            gc_info(&info);
            printf("GC:\n");
            printf("  %u total\n", info.total);
            printf("  %u used %u free\n", info.used, info.free);
            printf("  1=%u 2=%u m=%u\n", info.num_1block, info.num_2block, info.max_block);
        }
    
    #if 0
        // free space on flash
        {
            DWORD nclst;
            FATFS *fatfs;
            f_getfree("0:", &nclst, &fatfs);
            printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
        }
    #endif
    
        return mp_const_none;
    }
    
    #endif
    
    #define RAM_START (0x1FFF8000) // fixed for chip
    #define HEAP_END  (0x20006000) // tunable
    #define RAM_END   (0x20008000) // fixed for chip
    
    #if 0
    
    void gc_helper_get_regs_and_clean_stack(mp_uint_t *regs, mp_uint_t heap_end);
    
    mp_obj_t pyb_gc(void) {
        gc_collect();
        return mp_const_none;
    }
    
    mp_obj_t pyb_gpio(int n_args, mp_obj_t *args) {
        //assert(1 <= n_args && n_args <= 2);
    
        uint pin = mp_obj_get_int(args[0]);
        if (pin > CORE_NUM_DIGITAL) {
            goto pin_error;
        }
    
        if (n_args == 1) {
            // get pin
            pinMode(pin, INPUT);
            return MP_OBJ_NEW_SMALL_INT(digitalRead(pin));
        }
        
        // set pin
        pinMode(pin, OUTPUT);
        digitalWrite(pin, mp_obj_is_true(args[1]));
        return mp_const_none;
    
    pin_error:
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %d does not exist", pin));
    }
    
    MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_gpio_obj, 1, 2, pyb_gpio);
    
    #if 0
    mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
        mp_obj_t *items = mp_obj_get_array_fixed_n(arg, 4);
        uint8_t data[4];
        data[0] = mp_obj_get_int(items[0]);
        data[1] = mp_obj_get_int(items[1]);
        data[2] = mp_obj_get_int(items[2]);
        data[3] = mp_obj_get_int(items[3]);
        usb_hid_send_report(data);
        return mp_const_none;
    }
    #endif
    
    #endif // 0
    
    STATIC mp_obj_t pyb_config_source_dir = MP_OBJ_NULL;
    STATIC mp_obj_t pyb_config_main = MP_OBJ_NULL;
    STATIC mp_obj_t pyb_config_usb_mode = MP_OBJ_NULL;
    
    mp_obj_t pyb_source_dir(mp_obj_t source_dir) {
        if (MP_OBJ_IS_STR(source_dir)) {
            pyb_config_source_dir = source_dir;
        }
        return mp_const_none;
    }
    
    MP_DEFINE_CONST_FUN_OBJ_1(pyb_source_dir_obj, pyb_source_dir);
    
    mp_obj_t pyb_main(mp_obj_t main) {
        if (MP_OBJ_IS_STR(main)) {
            pyb_config_main = main;
        }
        return mp_const_none;
    }
    
    MP_DEFINE_CONST_FUN_OBJ_1(pyb_main_obj, pyb_main);
    
    STATIC mp_obj_t pyb_usb_mode(mp_obj_t usb_mode) {
        if (MP_OBJ_IS_STR(usb_mode)) {
            pyb_config_usb_mode = usb_mode;
        }
        return mp_const_none;
    }
    
    MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_mode_obj, pyb_usb_mode);
    
    #if 0
    
    mp_obj_t pyb_delay(mp_obj_t count) {
        delay(mp_obj_get_int(count));
        return mp_const_none;
    }
    
    mp_obj_t pyb_led(mp_obj_t state) {
        led_state(PYB_LED_BUILTIN, mp_obj_is_true(state));
        return state;
    }
    
    #endif  // 0
    
    #if 0
    char *strdup(const char *str) {
        uint32_t len = strlen(str);
        char *s2 = m_new(char, len + 1);
        memcpy(s2, str, len);
        s2[len] = 0;
        return s2;
    }
    #endif
    
    int main(void) {
        pinMode(LED_BUILTIN, OUTPUT);
        delay(1000);
    
        led_init();
    
    //    int first_soft_reset = true;
    
    soft_reset:
    
        led_state(PYB_LED_BUILTIN, 1);
    
        // GC init
        gc_init(&_heap_start, (void*)HEAP_END);
    
        qstr_init();
        mp_init();
    
        readline_init();
    
        //pin_init();
    
    #if 0
        // add some functions to the python namespace
        {
            mp_store_name(MP_QSTR_help, mp_make_function_n(0, pyb_help));
            mp_obj_t m = mp_obj_new_module(MP_QSTR_pyb);
            mp_store_attr(m, MP_QSTR_info, mp_make_function_n(0, pyb_info));
            mp_store_attr(m, MP_QSTR_source_dir, mp_make_function_n(1, pyb_source_dir));
            mp_store_attr(m, MP_QSTR_main, mp_make_function_n(1, pyb_main));
            mp_store_attr(m, MP_QSTR_gc, mp_make_function_n(0, pyb_gc));
            mp_store_attr(m, MP_QSTR_delay, mp_make_function_n(1, pyb_delay));
            mp_store_attr(m, MP_QSTR_led, mp_make_function_n(1, pyb_led));
            mp_store_attr(m, MP_QSTR_LED, (mp_obj_t)&pyb_led_type);
            mp_store_attr(m, MP_QSTR_analogRead, mp_make_function_n(1, pyb_analog_read));
            mp_store_attr(m, MP_QSTR_analogWrite, mp_make_function_n(2, pyb_analog_write));
            mp_store_attr(m, MP_QSTR_analogWriteResolution, mp_make_function_n(1, pyb_analog_write_resolution));
            mp_store_attr(m, MP_QSTR_analogWriteFrequency, mp_make_function_n(2, pyb_analog_write_frequency));
    
            mp_store_attr(m, MP_QSTR_gpio, (mp_obj_t)&pyb_gpio_obj);
            mp_store_attr(m, MP_QSTR_Servo, mp_make_function_n(0, pyb_Servo));
            mp_store_name(MP_QSTR_pyb, m);
        }
    #endif
    
        if (!pyexec_file("/boot.py")) {
            flash_error(4);
        }
    
        // Turn bootup LED off
        led_state(PYB_LED_BUILTIN, 0);
    
        // run main script
        {
            vstr_t *vstr = vstr_new();
            vstr_add_str(vstr, "/");
            if (pyb_config_main == MP_OBJ_NULL) {
                vstr_add_str(vstr, "main.py");
            } else {
                vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main));
            }
            if (!pyexec_file(vstr_str(vstr))) {
                flash_error(3);
            }
            vstr_free(vstr);
        }
    
        // enter REPL
        // REPL mode can change, or it can request a soft reset
        for (;;) {
            if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
                if (pyexec_raw_repl() != 0) {
                    break;
                }
            } else {
                if (pyexec_friendly_repl() != 0) {
                    break;
                }
            }
        }
    
        printf("PYB: soft reboot\n");
    
    //    first_soft_reset = false;
        goto soft_reset;
    }
    
    // stub out __libc_init_array. It's called by mk20dx128.c and is used to call
    // global C++ constructors. Since this is a C-only projects, we don't need to
    // call constructors.
    void __libc_init_array(void) {
    }
    
    // ultoa is used by usb_init_serialnumber. Normally ultoa would be provided
    // by nonstd.c from the teensy core, but it conflicts with some of the
    // MicroPython functions in string0.c, so we provide ultoa here.
    char * ultoa(unsigned long val, char *buf, int radix) 	
    {
    	unsigned digit;
    	int i=0, j;
    	char t;
    
    	while (1) {
    		digit = val % radix;
    		buf[i] = ((digit < 10) ? '0' + digit : 'A' + digit - 10);
    		val /= radix;
    		if (val == 0) break;
    		i++;
    	}
    	buf[i + 1] = 0;
    	for (j=0; j < i; j++, i--) {
    		t = buf[j];
    		buf[j] = buf[i];
    		buf[i] = t;
    	}
    	return buf;
    }
    
    STATIC NORETURN mp_obj_t mp_sys_exit(uint n_args, const mp_obj_t *args) {
        int rc = 0;
        if (n_args > 0) {
            rc = mp_obj_get_int(args[0]);
        }
        nlr_raise(mp_obj_new_exception_arg1(&mp_type_SystemExit, mp_obj_new_int(rc)));
    }
    MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_sys_exit_obj, 0, 1, mp_sys_exit);