Skip to content
Snippets Groups Projects
Select Git revision
  • fc28ffb4ac1230bb932d63fa285a8fb09eb67fd4
  • main default protected
  • pippin/media_framework
  • release/1.1.1
  • release/1.1.0
  • fpletz/flake
  • sec/auto-nick
  • rahix/flow3rseeds
  • compressor
  • sec/blinky
  • pippin/uhm_flash_access_bust
  • release/1.0.0
  • fm_fix2
  • fm_fix
  • pippin/make_empty_drawlists_skip_render_and_blit
  • pressable_bugfix
  • moon2_gay_drums
  • moon2_applications
  • schneider/application-remove-name
  • anon/webflasher
  • pippin/display-python-errors-on-display
  • v1.1.1
  • v1.1.0
  • v1.1.0+rc1
  • v1.0.0
  • v1.0.0+rc6
  • v1.0.0+rc5
  • v1.0.0+rc4
  • v1.0.0+rc3
  • v1.0.0+rc2
  • v1.0.0+rc1
31 results

machine_hw_spi.c

Blame
  • Forked from flow3r / flow3r firmware
    1529 commits behind, 14621 commits ahead of the upstream repository.
    machine_hw_spi.c 18.43 KiB
    /*
     * This file is part of the MicroPython project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2017 "Eric Poulsen" <eric@zyxod.com>
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <stdio.h>
    #include <stdint.h>
    #include <string.h>
    
    #include "py/runtime.h"
    #include "py/stream.h"
    #include "py/mphal.h"
    #include "extmod/machine_spi.h"
    #include "modmachine.h"
    
    #include "driver/spi_master.h"
    
    // SPI mappings by device, naming used by IDF old/new
    // upython   | ESP32     | ESP32S2   | ESP32S3 | ESP32C3
    // ----------+-----------+-----------+---------+---------
    // SPI(id=1) | HSPI/SPI2 | FSPI/SPI2 | SPI2    | SPI2
    // SPI(id=2) | VSPI/SPI3 | HSPI/SPI3 | SPI3    | err
    
    // Default pins for SPI(id=1) aka IDF SPI2, can be overridden by a board
    #ifndef MICROPY_HW_SPI1_SCK
    #ifdef SPI2_IOMUX_PIN_NUM_CLK
    // Use IO_MUX pins by default.
    // If SPI lines are routed to other pins through GPIO matrix
    // routing adds some delay and lower limit applies to SPI clk freq
    #define MICROPY_HW_SPI1_SCK SPI2_IOMUX_PIN_NUM_CLK      // pin 14 on ESP32
    #define MICROPY_HW_SPI1_MOSI SPI2_IOMUX_PIN_NUM_MOSI    // pin 13 on ESP32
    #define MICROPY_HW_SPI1_MISO SPI2_IOMUX_PIN_NUM_MISO    // pin 12 on ESP32
    // Only for compatibility with IDF 4.2 and older
    #elif CONFIG_IDF_TARGET_ESP32S2
    #define MICROPY_HW_SPI1_SCK FSPI_IOMUX_PIN_NUM_CLK
    #define MICROPY_HW_SPI1_MOSI FSPI_IOMUX_PIN_NUM_MOSI
    #define MICROPY_HW_SPI1_MISO FSPI_IOMUX_PIN_NUM_MISO
    #else
    #define MICROPY_HW_SPI1_SCK HSPI_IOMUX_PIN_NUM_CLK
    #define MICROPY_HW_SPI1_MOSI HSPI_IOMUX_PIN_NUM_MOSI
    #define MICROPY_HW_SPI1_MISO HSPI_IOMUX_PIN_NUM_MISO
    #endif
    #endif
    
    // Default pins for SPI(id=2) aka IDF SPI3, can be overridden by a board
    #ifndef MICROPY_HW_SPI2_SCK
    #if CONFIG_IDF_TARGET_ESP32
    // ESP32 has IO_MUX pins for VSPI/SPI3 lines, use them as defaults
    #define MICROPY_HW_SPI2_SCK VSPI_IOMUX_PIN_NUM_CLK      // pin 18
    #define MICROPY_HW_SPI2_MOSI VSPI_IOMUX_PIN_NUM_MOSI    // pin 23
    #define MICROPY_HW_SPI2_MISO VSPI_IOMUX_PIN_NUM_MISO    // pin 19
    #elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
    // ESP32S2 and S3 uses GPIO matrix for SPI3 pins, no IO_MUX possible
    // Set defaults to the pins used by SPI2 in Octal mode
    #define MICROPY_HW_SPI2_SCK (36)
    #define MICROPY_HW_SPI2_MOSI (35)
    #define MICROPY_HW_SPI2_MISO (37)
    #endif
    #endif
    
    #define MP_HW_SPI_MAX_XFER_BYTES (4092)
    #define MP_HW_SPI_MAX_XFER_BITS (MP_HW_SPI_MAX_XFER_BYTES * 8) // Has to be an even multiple of 8
    
    #if CONFIG_IDF_TARGET_ESP32C3
    #define HSPI_HOST SPI2_HOST
    #elif CONFIG_IDF_TARGET_ESP32S3
    #define HSPI_HOST SPI3_HOST
    #define FSPI_HOST SPI2_HOST
    #endif
    
    typedef struct _machine_hw_spi_default_pins_t {
        int8_t sck;
        int8_t mosi;
        int8_t miso;
    } machine_hw_spi_default_pins_t;
    
    typedef struct _machine_hw_spi_obj_t {
        mp_obj_base_t base;
        spi_host_device_t host;
        uint32_t baudrate;
        uint8_t polarity;
        uint8_t phase;
        uint8_t bits;
        uint8_t firstbit;
        int8_t sck;
        int8_t mosi;
        int8_t miso;
        spi_device_handle_t spi;
        enum {
            MACHINE_HW_SPI_STATE_NONE,
            MACHINE_HW_SPI_STATE_INIT,
            MACHINE_HW_SPI_STATE_DEINIT
        } state;
    } machine_hw_spi_obj_t;
    
    // Default pin mappings for the hardware SPI instances
    STATIC const machine_hw_spi_default_pins_t machine_hw_spi_default_pins[2] = {
        { .sck = MICROPY_HW_SPI1_SCK, .mosi = MICROPY_HW_SPI1_MOSI, .miso = MICROPY_HW_SPI1_MISO },
        #ifdef MICROPY_HW_SPI2_SCK
        { .sck = MICROPY_HW_SPI2_SCK, .mosi = MICROPY_HW_SPI2_MOSI, .miso = MICROPY_HW_SPI2_MISO },
        #endif
    };
    
    // Static objects mapping to HSPI and VSPI hardware peripherals
    STATIC machine_hw_spi_obj_t machine_hw_spi_obj[2];
    
    STATIC void machine_hw_spi_deinit_internal(machine_hw_spi_obj_t *self) {
        switch (spi_bus_remove_device(self->spi)) {
            case ESP_ERR_INVALID_ARG:
                mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("invalid configuration"));
                return;
    
            case ESP_ERR_INVALID_STATE:
                mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("SPI device already freed"));
                return;
        }
    
        switch (spi_bus_free(self->host)) {
            case ESP_ERR_INVALID_ARG:
                mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("invalid configuration"));
                return;
    
            case ESP_ERR_INVALID_STATE:
                mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("SPI bus already freed"));
                return;
        }
    
        int8_t pins[3] = {self->miso, self->mosi, self->sck};
    
        for (int i = 0; i < 3; i++) {
            if (pins[i] != -1) {
                gpio_pad_select_gpio(pins[i]);
                gpio_matrix_out(pins[i], SIG_GPIO_OUT_IDX, false, false);
                gpio_set_direction(pins[i], GPIO_MODE_INPUT);
            }
        }
    }
    
    STATIC void machine_hw_spi_init_internal(
        machine_hw_spi_obj_t *self,
        int8_t host,
        int32_t baudrate,
        int8_t polarity,
        int8_t phase,
        int8_t bits,
        int8_t firstbit,
        int8_t sck,
        int8_t mosi,
        int8_t miso) {
    
        // if we're not initialized, then we're
        // implicitly 'changed', since this is the init routine
        bool changed = self->state != MACHINE_HW_SPI_STATE_INIT;
    
        esp_err_t ret;
    
        machine_hw_spi_obj_t old_self = *self;
    
        if (host != -1 && host != self->host) {
            self->host = host;
            changed = true;
        }
    
        if (baudrate != -1) {
            // calculate the actual clock frequency that the SPI peripheral can produce
            baudrate = spi_get_actual_clock(APB_CLK_FREQ, baudrate, 0);
            if (baudrate != self->baudrate) {
                self->baudrate = baudrate;
                changed = true;
            }
        }
    
        if (polarity != -1 && polarity != self->polarity) {
            self->polarity = polarity;
            changed = true;
        }
    
        if (phase != -1 && phase != self->phase) {
            self->phase = phase;
            changed = true;
        }
    
        if (bits != -1 && bits != self->bits) {
            self->bits = bits;
            changed = true;
        }
    
        if (firstbit != -1 && firstbit != self->firstbit) {
            self->firstbit = firstbit;
            changed = true;
        }
    
        if (sck != -2 && sck != self->sck) {
            self->sck = sck;
            changed = true;
        }
    
        if (mosi != -2 && mosi != self->mosi) {
            self->mosi = mosi;
            changed = true;
        }
    
        if (miso != -2 && miso != self->miso) {
            self->miso = miso;
            changed = true;
        }
    
        if (self->host != HSPI_HOST
            #ifdef FSPI_HOST
            && self->host != FSPI_HOST
            #endif
            #ifdef VSPI_HOST
            && self->host != VSPI_HOST
            #endif
            ) {
            mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("SPI(%d) doesn't exist"), self->host);
        }
    
        if (changed) {
            if (self->state == MACHINE_HW_SPI_STATE_INIT) {
                self->state = MACHINE_HW_SPI_STATE_DEINIT;
                machine_hw_spi_deinit_internal(&old_self);
            }
        } else {
            return; // no changes
        }
    
        spi_bus_config_t buscfg = {
            .miso_io_num = self->miso,
            .mosi_io_num = self->mosi,
            .sclk_io_num = self->sck,
            .quadwp_io_num = -1,
            .quadhd_io_num = -1
        };
    
        spi_device_interface_config_t devcfg = {
            .clock_speed_hz = self->baudrate,
            .mode = self->phase | (self->polarity << 1),
            .spics_io_num = -1, // No CS pin
            .queue_size = 2,
            .flags = self->firstbit == MICROPY_PY_MACHINE_SPI_LSB ? SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST : 0,
            .pre_cb = NULL
        };
    
        // Initialize the SPI bus
    
        // Select DMA channel based on the hardware SPI host
        int dma_chan = 0;
        #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3
        dma_chan = SPI_DMA_CH_AUTO;
        #else
        if (self->host == HSPI_HOST) {
            dma_chan = 1;
        } else {
            dma_chan = 2;
        }
        #endif
    
        ret = spi_bus_initialize(self->host, &buscfg, dma_chan);
        switch (ret) {
            case ESP_ERR_INVALID_ARG:
                mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("invalid configuration"));
                return;
    
            case ESP_ERR_INVALID_STATE:
                mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("SPI host already in use"));
                return;
        }
    
        ret = spi_bus_add_device(self->host, &devcfg, &self->spi);
        switch (ret) {
            case ESP_ERR_INVALID_ARG:
                mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("invalid configuration"));
                spi_bus_free(self->host);
                return;
    
            case ESP_ERR_NO_MEM:
                mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("out of memory"));
                spi_bus_free(self->host);
                return;
    
            case ESP_ERR_NOT_FOUND:
                mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("no free slots"));
                spi_bus_free(self->host);
                return;
        }
        self->state = MACHINE_HW_SPI_STATE_INIT;
    }
    
    STATIC void machine_hw_spi_deinit(mp_obj_base_t *self_in) {
        machine_hw_spi_obj_t *self = (machine_hw_spi_obj_t *)self_in;
        if (self->state == MACHINE_HW_SPI_STATE_INIT) {
            self->state = MACHINE_HW_SPI_STATE_DEINIT;
            machine_hw_spi_deinit_internal(self);
        }
    }
    
    STATIC mp_uint_t gcd(mp_uint_t x, mp_uint_t y) {
        while (x != y) {
            if (x > y) {
                x -= y;
            } else {
                y -= x;
            }
        }
        return x;
    }
    
    STATIC void machine_hw_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
        machine_hw_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
    
        if (self->state == MACHINE_HW_SPI_STATE_DEINIT) {
            mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("transfer on deinitialized SPI"));
            return;
        }
    
        // Round to nearest whole set of bits
        int bits_to_send = len * 8 / self->bits * self->bits;
    
        if (!bits_to_send) {
            mp_raise_ValueError(MP_ERROR_TEXT("buffer too short"));
        }
    
        if (len <= 4) {
            spi_transaction_t transaction = { 0 };
    
            if (src != NULL) {
                memcpy(&transaction.tx_data, src, len);
            }
    
            transaction.flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA;
            transaction.length = bits_to_send;
            spi_device_transmit(self->spi, &transaction);
    
            if (dest != NULL) {
                memcpy(dest, &transaction.rx_data, len);
            }
        } else {
            int offset = 0;
            int bits_remaining = bits_to_send;
            int optimum_word_size = 8 * self->bits / gcd(8, self->bits);
            int max_transaction_bits = MP_HW_SPI_MAX_XFER_BITS / optimum_word_size * optimum_word_size;
            spi_transaction_t *transaction, *result, transactions[2];
            int i = 0;
    
            spi_device_acquire_bus(self->spi, portMAX_DELAY);
    
            while (bits_remaining) {
                transaction = transactions + i++ % 2;
                memset(transaction, 0, sizeof(spi_transaction_t));
    
                transaction->length =
                    bits_remaining > max_transaction_bits ? max_transaction_bits : bits_remaining;
    
                if (src != NULL) {
                    transaction->tx_buffer = src + offset;
                }
                if (dest != NULL) {
                    transaction->rx_buffer = dest + offset;
                }
    
                spi_device_queue_trans(self->spi, transaction, portMAX_DELAY);
                bits_remaining -= transaction->length;
    
                if (offset > 0) {
                    // wait for previously queued transaction
                    MP_THREAD_GIL_EXIT();
                    spi_device_get_trans_result(self->spi, &result, portMAX_DELAY);
                    MP_THREAD_GIL_ENTER();
                }
    
                // doesn't need ceil(); loop ends when bits_remaining is 0
                offset += transaction->length / 8;
            }
    
            // wait for last transaction
            MP_THREAD_GIL_EXIT();
            spi_device_get_trans_result(self->spi, &result, portMAX_DELAY);
            MP_THREAD_GIL_ENTER();
            spi_device_release_bus(self->spi);
        }
    }
    
    /******************************************************************************/
    // MicroPython bindings for hw_spi
    
    STATIC void machine_hw_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
        machine_hw_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
        mp_printf(print, "SPI(id=%u, baudrate=%u, polarity=%u, phase=%u, bits=%u, firstbit=%u, sck=%d, mosi=%d, miso=%d)",
            self->host, self->baudrate, self->polarity,
            self->phase, self->bits, self->firstbit,
            self->sck, self->mosi, self->miso);
    }
    
    STATIC void machine_hw_spi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
        machine_hw_spi_obj_t *self = (machine_hw_spi_obj_t *)self_in;
    
        enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_sck, ARG_mosi, ARG_miso };
        static const mp_arg_t allowed_args[] = {
            { MP_QSTR_id,       MP_ARG_INT, {.u_int = -1} },
            { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
            { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
            { MP_QSTR_phase,    MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
            { MP_QSTR_bits,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
            { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
            { MP_QSTR_sck,      MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
            { MP_QSTR_mosi,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
            { MP_QSTR_miso,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        };
    
        mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
        mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args),
            allowed_args, args);
        int8_t sck, mosi, miso;
    
        if (args[ARG_sck].u_obj == MP_OBJ_NULL) {
            sck = -2;
        } else if (args[ARG_sck].u_obj == mp_const_none) {
            sck = -1;
        } else {
            sck = machine_pin_get_id(args[ARG_sck].u_obj);
        }
    
        if (args[ARG_miso].u_obj == MP_OBJ_NULL) {
            miso = -2;
        } else if (args[ARG_miso].u_obj == mp_const_none) {
            miso = -1;
        } else {
            miso = machine_pin_get_id(args[ARG_miso].u_obj);
        }
    
        if (args[ARG_mosi].u_obj == MP_OBJ_NULL) {
            mosi = -2;
        } else if (args[ARG_mosi].u_obj == mp_const_none) {
            mosi = -1;
        } else {
            mosi = machine_pin_get_id(args[ARG_mosi].u_obj);
        }
    
        machine_hw_spi_init_internal(self, args[ARG_id].u_int, args[ARG_baudrate].u_int,
            args[ARG_polarity].u_int, args[ARG_phase].u_int, args[ARG_bits].u_int,
            args[ARG_firstbit].u_int, sck, mosi, miso);
    }
    
    mp_obj_t machine_hw_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
        MP_MACHINE_SPI_CHECK_FOR_LEGACY_SOFTSPI_CONSTRUCTION(n_args, n_kw, all_args);
    
        enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_sck, ARG_mosi, ARG_miso };
        static const mp_arg_t allowed_args[] = {
            { MP_QSTR_id,       MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
            { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 500000} },
            { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
            { MP_QSTR_phase,    MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
            { MP_QSTR_bits,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
            { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = MICROPY_PY_MACHINE_SPI_MSB} },
            { MP_QSTR_sck,      MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
            { MP_QSTR_mosi,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
            { MP_QSTR_miso,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        };
        mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
        mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
    
        machine_hw_spi_obj_t *self;
        const machine_hw_spi_default_pins_t *default_pins;
        if (args[ARG_id].u_int == 1) { // SPI2_HOST which is FSPI_HOST on ESP32Sx, HSPI_HOST on others
            self = &machine_hw_spi_obj[0];
            default_pins = &machine_hw_spi_default_pins[0];
        } else {
            self = &machine_hw_spi_obj[1];
            default_pins = &machine_hw_spi_default_pins[1];
        }
        self->base.type = &machine_spi_type;
    
        int8_t sck, mosi, miso;
    
        if (args[ARG_sck].u_obj == MP_OBJ_NULL) {
            sck = default_pins->sck;
        } else if (args[ARG_sck].u_obj == mp_const_none) {
            sck = -1;
        } else {
            sck = machine_pin_get_id(args[ARG_sck].u_obj);
        }
    
        if (args[ARG_mosi].u_obj == MP_OBJ_NULL) {
            mosi = default_pins->mosi;
        } else if (args[ARG_mosi].u_obj == mp_const_none) {
            mosi = -1;
        } else {
            mosi = machine_pin_get_id(args[ARG_mosi].u_obj);
        }
    
        if (args[ARG_miso].u_obj == MP_OBJ_NULL) {
            miso = default_pins->miso;
        } else if (args[ARG_miso].u_obj == mp_const_none) {
            miso = -1;
        } else {
            miso = machine_pin_get_id(args[ARG_miso].u_obj);
        }
    
        machine_hw_spi_init_internal(
            self,
            args[ARG_id].u_int,
            args[ARG_baudrate].u_int,
            args[ARG_polarity].u_int,
            args[ARG_phase].u_int,
            args[ARG_bits].u_int,
            args[ARG_firstbit].u_int,
            sck,
            mosi,
            miso);
    
        return MP_OBJ_FROM_PTR(self);
    }
    
    spi_host_device_t machine_hw_spi_get_host(mp_obj_t in) {
        if (mp_obj_get_type(in) != &machine_spi_type) {
            mp_raise_ValueError(MP_ERROR_TEXT("expecting a SPI object"));
        }
        machine_hw_spi_obj_t *self = (machine_hw_spi_obj_t *)in;
        return self->host;
    }
    
    STATIC const mp_machine_spi_p_t machine_hw_spi_p = {
        .init = machine_hw_spi_init,
        .deinit = machine_hw_spi_deinit,
        .transfer = machine_hw_spi_transfer,
    };
    
    MP_DEFINE_CONST_OBJ_TYPE(
        machine_spi_type,
        MP_QSTR_SPI,
        MP_TYPE_FLAG_NONE,
        make_new, machine_hw_spi_make_new,
        print, machine_hw_spi_print,
        protocol, &machine_hw_spi_p,
        locals_dict, &mp_machine_spi_locals_dict
        );