Newer
Older
#ifndef _EPICARDIUM_H
#define _EPICARDIUM_H
/* Some headers are not recognized by hawkmoth for some odd reason */
#endif /* __SPHINX_DOC */
/*
* These definitions are required for the code-generator. Please don't touch!
*/
#ifndef API_ISR
#define API_ISR(id, isr) void isr(void);
#endif
/*
* IDs for all defined API calls. These IDs should not be needed in application
* code on any side.
*/
/* clang-format off */
#define API_SYSTEM_EXIT 0x1
#define API_SYSTEM_EXEC 0x2
#define API_INTERRUPT_ENABLE 0xA
#define API_INTERRUPT_DISABLE 0xB
#define API_UART_WRITE_STR 0x10
#define API_UART_READ_CHAR 0x11
#define API_UART_READ_STR 0x12
#define API_STREAM_READ 0x1F
#define API_DISP_OPEN 0x20
#define API_DISP_CLOSE 0x21
#define API_DISP_PRINT 0x22
#define API_DISP_CLEAR 0x23
#define API_DISP_UPDATE 0x24
#define API_DISP_LINE 0x25
#define API_DISP_RECT 0x26
#define API_DISP_CIRC 0x27
#define API_DISP_PIXEL 0x28
#define API_DISP_FRAMEBUFFER 0x29
#define API_FILE_OPEN 0x40
#define API_FILE_CLOSE 0x41
#define API_FILE_READ 0x42
#define API_FILE_WRITE 0x44
#define API_FILE_FLUSH 0x45
#define API_FILE_SEEK 0x46
#define API_FILE_TELL 0x47
#define API_FILE_STAT 0x48
#define API_FILE_OPENDIR 0x49
#define API_FILE_READDIR 0x4a
#define API_FILE_UNLINK 0x4b
#define API_FILE_RENAME 0x4c
#define API_FILE_MKDIR 0x4d
#define API_RTC_GET_SECONDS 0x50
#define API_RTC_SCHEDULE_ALARM 0x51
#define API_LEDS_SET_HSV 0x61
#define API_LEDS_PREP 0x62
#define API_LEDS_PREP_HSV 0x63
#define API_LEDS_UPDATE 0x64
#define API_LEDS_SET_POWERSAVE 0x65
#define API_LEDS_SET_ROCKET 0x66
#define API_LEDS_SET_FLASHLIGHT 0x67
#define API_LEDS_DIM_TOP 0x68
#define API_LEDS_DIM_BOTTOM 0x69
#define API_LEDS_SET_ALL 0x6a
#define API_LEDS_SET_ALL_HSV 0x6b
#define API_LEDS_SET_GAMMA_TABLE 0x6c
#define API_LEDS_CLEAR_ALL 0x6d
#define API_VIBRA_SET 0x70
#define API_VIBRA_VIBRATE 0x71
#define API_LIGHT_SENSOR_RUN 0x80
#define API_LIGHT_SENSOR_GET 0x81
#define API_LIGHT_SENSOR_STOP 0x82
#define API_GPIO_SET_PIN_MODE 0xA0
#define API_GPIO_GET_PIN_MODE 0xA1
#define API_GPIO_WRITE_PIN 0xA2
#define API_GPIO_READ_PIN 0xA3
#define API_TRNG_READ 0xB0
#define API_PERSONAL_STATE_SET 0xc0
#define API_PERSONAL_STATE_GET 0xc1
#define API_PERSONAL_STATE_IS_PERSISTENT 0xc2
#define API_BME680_INIT 0xD0
#define API_BME680_DEINIT 0xD1
#define API_BME680_GET_DATA 0xD2
#define API_BHI160_ENABLE 0xe0
#define API_BHI160_DISABLE 0xe1
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/* clang-format on */
typedef uint32_t api_int_id_t;
/**
* Interrupts
* ==========
* Next to API calls, Epicardium API also has an interrupt mechanism to serve
* the other direction. These interrupts can be enabled/disabled
* (masked/unmasked) using :c:func:`epic_interrupt_enable` and
* :c:func:`epic_interrupt_disable`.
*/
/**
* Enable/unmask an API interrupt.
*
* :param int_id: The interrupt to be enabled
*/
API(API_INTERRUPT_ENABLE, int epic_interrupt_enable(api_int_id_t int_id));
/**
* Disable/mask an API interrupt.
*
* :param int_id: The interrupt to be disabled
*/
API(API_INTERRUPT_DISABLE, int epic_interrupt_disable(api_int_id_t int_id));
/**
* The following interrupts are defined:
*/
#define EPIC_INT_RESET 0
/** ``^C`` interrupt. See :c:func:`epic_isr_ctrl_c` for details. */
#define EPIC_INT_CTRL_C 1
/** UART Receive interrupt. See :c:func:`epic_isr_uart_rx`. */
/** RTC Alarm interrupt. See :c:func:`epic_isr_rtc_alarm` */
#define EPIC_INT_RTC_ALARM 3
#define EPIC_INT_BHI160_ACCELEROMETER 4
API_ISR(EPIC_INT_BHI160_ACCELEROMETER, epic_isr_bhi160_accelerometer);
#define EPIC_INT_BHI160_ORIENTATION 5
API_ISR(EPIC_INT_BHI160_ORIENTATION, epic_isr_bhi160_orientation);
#define EPIC_INT_BHI160_GYROSCOPE 6
API_ISR(EPIC_INT_BHI160_GYROSCOPE, epic_isr_bhi160_gyroscope);
/* Number of defined interrupts. */
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
* "Reset Handler*. This isr is implemented by the API caller and is used to
* reset the core for loading a new payload.
*
* Just listed here for completeness. You don't need to implement this yourself.
*/
API_ISR(EPIC_INT_RESET, __epic_isr_reset);
/**
* Core API
* ========
* The following functions control execution of code on core 1.
*/
/**
* Stop execution of the current payload and return to the menu.
*
* :param int ret: Return code.
* :return: :c:func:`epic_exit` will never return.
*/
void epic_exit(int ret) __attribute__((noreturn));
/*
* The actual epic_exit() function is not an API call because it needs special
* behavior. The underlying call is __epic_exit() which returns. After calling
* this API function, epic_exit() will enter the reset handler.
*/
API(API_SYSTEM_EXIT, void __epic_exit(int ret));
/**
* Stop execution of the current payload and immediately start another payload.
*
* :param char* name: Name (path) of the new payload to start. This can either
* be:
*
* - A path to an ``.elf`` file (l0dable).
* - A path to a ``.py`` file (will be loaded using Pycardium).
* - A path to a directory (assumed to be a Python module, execution starts
* with ``__init__.py`` in this folder).
*
* :return: :c:func:`epic_exec` will only return in case loading went wrong.
* The following error codes can be returned:
*
* - ``-ENOENT``: File not found.
* - ``-ENOEXEC``: File not a loadable format.
*/
int epic_exec(char *name);
/*
* Underlying API call for epic_exec(). The function is not an API call itself
* because it needs special behavior when loading a new payload.
*/
API(API_SYSTEM_EXEC, int __epic_exec(char *name));
/**
* Reset/Restart card10
*/
API(API_SYSTEM_RESET, void epic_system_reset(void));
/**
* Battery Voltage
* ===============
*/
/**
* Read the current battery voltage.
*/
API(API_BATTERY_VOLTAGE, int epic_read_battery_voltage(float *result));
/**
* UART/Serial Interface
* =====================
*/
/**
* Write a string to all connected serial devices. This includes:
*
* - Real UART, whose pins are mapped onto USB-C pins. Accessible via the HW-debugger.
* - A CDC-ACM device available via USB.
* - Maybe, in the future, bluetooth serial?
*
* :param str: String to write. Does not necessarily have to be NULL-terminated.
* :param length: Amount of bytes to print.
*/
API(API_UART_WRITE_STR, void epic_uart_write_str(
const char *str,
intptr_t length
));
* Try reading a single character from any connected serial device.
* If nothing is available, :c:func:`epic_uart_read_char` returns ``(-1)``.
* :return: The byte or ``(-1)`` if no byte was available.
*/
API(API_UART_READ_CHAR, int epic_uart_read_char(void));
/**
* Read as many characters as possible from the UART queue.
*
* :c:func:`epic_uart_read_str` will not block if no new data is available. For
* an example, see :c:func:`epic_isr_uart_rx`.
*
* :param char* buf: Buffer to be filled with incoming data.
* :param size_t cnt: Size of ``buf``.
* :returns: Number of bytes read. Can be ``0`` if no data was available.
* Might be a negative value if an error occured.
*/
API(API_UART_READ_STR, int epic_uart_read_str(char *buf, size_t cnt));
/**
* **Interrupt Service Routine**
*
* UART receive interrupt. This interrupt is triggered whenever a new character
* becomes available on any connected UART device. This function is weakly
* aliased to :c:func:`epic_isr_default` by default.
*
* **Example**:
*
* .. code-block:: cpp
*
* void epic_isr_uart_rx(void)
* {
* char buffer[33];
* int n = epic_uart_read_str(&buffer, sizeof(buffer) - 1);
* buffer[n] = '\0';
* printf("Got: %s\n", buffer);
* }
*
* int main(void)
* {
* epic_interrupt_enable(EPIC_INT_UART_RX);
* while (1) {
* __WFI();
* }
* }
API_ISR(EPIC_INT_UART_RX, epic_isr_uart_rx);
/**
* **Interrupt Service Routine**
*
* A user-defineable ISR which is triggered when a ``^C`` (``0x04``) is received
* on any serial input device. This function is weakly aliased to
* :c:func:`epic_isr_default` by default.
*
* To enable this interrupt, you need to enable :c:data:`EPIC_INT_CTRL_C`:
*
* .. code-block:: cpp
*
* epic_interrupt_enable(EPIC_INT_CTRL_C);
*/
API_ISR(EPIC_INT_CTRL_C, epic_isr_ctrl_c);
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/**
* Buttons
* =======
*
*/
/** Button IDs */
enum epic_button {
/** ``1``, Bottom left button (bit 0). */
BUTTON_LEFT_BOTTOM = 1,
/** ``2``, Bottom right button (bit 1). */
BUTTON_RIGHT_BOTTOM = 2,
/** ``4``, Top right button (bit 2). */
BUTTON_RIGHT_TOP = 4,
/** ``8``, Top left (power) button (bit 3). */
BUTTON_LEFT_TOP = 8,
/** ``8``, Top left (power) button (bit 3). */
BUTTON_RESET = 8,
};
/**
* Read buttons.
*
* :c:func:`epic_buttons_read` will read all buttons specified in ``mask`` and
* return set bits for each button which was reported as pressed.
*
* .. note::
*
* The reset button cannot be unmapped from reset functionality. So, while
* you can read it, it cannot be used for app control.
*
* **Example**:
*
* .. code-block:: cpp
*
* #include "epicardium.h"
*
* uint8_t pressed = epic_buttons_read(BUTTON_LEFT_BOTTOM | BUTTON_RIGHT_BOTTOM);
*
* if (pressed & BUTTON_LEFT_BOTTOM) {
* // Bottom left button is pressed
* }
*
* if (pressed & BUTTON_RIGHT_BOTTOM) {
* // Bottom right button is pressed
* }
*
* :param uint8_t mask: Mask of buttons to read. The 4 LSBs correspond to the 4
* buttons:
*
* ===== ========= ============ ===========
* ``3`` ``2`` ``1`` ``0``
* ----- --------- ------------ -----------
* Reset Right Top Right Bottom Left Bottom
* ===== ========= ============ ===========
*
* Use the values defined in :c:type:`epic_button` for masking, as shown in
* the example above.
* :return: Returns nonzero value if unmasked buttons are pushed.
*/
API(API_BUTTONS_READ, uint8_t epic_buttons_read(uint8_t mask));
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
/**
* Wristband GPIO
* ==============
*/
/** GPIO pins IDs */
enum gpio_pin {
/** ``1``, Wristband connector 1 */
GPIO_WRISTBAND_1 = 1,
/** ``2``, Wristband connector 2 */
GPIO_WRISTBAND_2 = 2,
/** ``3``, Wristband connector 3 */
GPIO_WRISTBAND_3 = 3,
/** ``4``, Wristband connector 4 */
GPIO_WRISTBAND_4 = 4,
};
/** GPIO pin modes */
enum gpio_mode {
/** Configure the pin as input */
GPIO_MODE_IN = (1<<0),
/** Configure the pin as output */
GPIO_MODE_OUT = (1<<1),
/** Enable the internal pull-up resistor */
GPIO_PULL_UP = (1<<6),
/** Enable the internal pull-down resistor */
GPIO_PULL_DOWN = (1<<7),
};
/**
* Set the mode of a card10 GPIO pin.
*
* :c:func:`epic_gpio_set_pin_mode` will set the pin specified by ``pin`` to the mode ``mode``.
* If the specified pin ID is not valid this function will do nothing.
*
* **Example:**
*
* .. code-block:: cpp
*
* #include "epicardium.h"
*
* // Configure wristband pin 1 as output.
* if (epic_gpio_set_pin_mode(GPIO_WRISTBAND_1, GPIO_MODE_OUT)) {
* // Do your error handling here...
* }
*
* :param uint8_t pin: ID of the pin to configure. Use on of the IDs defined in :c:type:`gpio_pin`.
* :param uint8_t mode: Mode to be configured. Use a combination of the :c:type:`gpio_mode` flags.
* :returns: ``0`` if the mode was set, ``-EINVAL`` if ``pin`` is not valid or the mode could not be set.
*/
API(API_GPIO_SET_PIN_MODE, int epic_gpio_set_pin_mode(uint8_t pin, uint8_t mode));
/**
* Get the mode of a card10 GPIO pin.
*
* :c:func:`epic_gpio_get_pin_mode` will get the current mode of the GPIO pin specified by ``pin``.
*
* **Example:**
*
* .. code-block:: cpp
*
* #include "epicardium.h"
*
* // Get the mode of wristband pin 1.
* int mode = epic_gpio_get_pin_mode(GPIO_WRISTBAND_1);
* if (mode < 0) {
* // Do your error handling here...
* } else {
* // Do something with the queried mode information
* }
*
* :param uint8_t pin: ID of the pin to get the configuration of. Use on of the IDs defined in :c:type:`gpio_pin`.
* :returns: Configuration byte for the specified pin or ``-EINVAL`` if the pin is not valid.
*/
API(API_GPIO_GET_PIN_MODE, int epic_gpio_get_pin_mode(uint8_t pin));
/**
* Write value to a card10 GPIO pin,
*
* :c:func:`epic_gpio_write_pin` will set the value of the GPIO pin described by ``pin`` to either on or off depending on ``on``.
*
* **Example:**
*
* .. code-block:: cpp
*
* #include "epicardium.h"
*
* // Get the mode of wristband pin 1.
* int mode = epic_gpio_get_pin_mode(GPIO_WRISTBAND_1);
* if (mode < 0) {
* // Do your error handling here...
* } else {
* // Do something with the queried mode information
* }
*
* :param uint8_t pin: ID of the pin to get the configuration of. Use on of the IDs defined in :c:type:`gpio_pin`.
* :param bool on: Sets the pin to either true (on/high) or false (off/low).
* :returns: ``0`` on succcess, ``-EINVAL`` if ``pin`` is not valid or is not configured as an output.
*/
API(API_GPIO_WRITE_PIN, int epic_gpio_write_pin(uint8_t pin, bool on));
/**
* Read value of a card10 GPIO pin.
*
* :c:func:`epic_gpio_read_pin` will get the value of the GPIO pin described by ``pin``.
*
* **Example:**
*
* .. code-block:: cpp
*
* #include "epicardium.h"
*
* // Get the current value of wristband pin 1.
* uint32_t value = epic_gpio_read_pin(GPIO_WRISTBAND_1);
* if (mode == -EINVAL) {
* // Do your error handling here...
* } else {
* // Do something with the current value
* }
*
* :param uint8_t pin: ID of the pin to get the configuration of. Use on of the IDs defined in :c:type:`gpio_pin`.
* :returns: ``-EINVAL`` if ``pin`` is not valid, an integer value otherwise.
*/
API(API_GPIO_READ_PIN, uint32_t epic_gpio_read_pin(uint8_t pin));
/**
* LEDs
* ====
*/
/**
* Set one of card10's RGB LEDs to a certain color in RGB format.
* This function is rather slow when setting multiple LEDs, use
* :c:func:`leds_set_all` or :c:func:`leds_prep` + :c:func:`leds_update`
* instead.
* :param int led: Which LED to set. 0-10 are the LEDs on the top and 11-14
* are the 4 "ambient" LEDs.
* :param uint8_t r: Red component of the color.
* :param uint8_t g: Green component of the color.
* :param uint8_t b: Blue component of the color.
API(API_LEDS_SET, void epic_leds_set(int led, uint8_t r, uint8_t g, uint8_t b));
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
/**
* Set one of card10's RGB LEDs to a certain color in HSV format.
*
* This function is rather slow when setting multiple LEDs, use
* :c:func:`leds_set_all_hsv` or :c:func:`leds_prep_hsv` + :c:func:`leds_update`
* instead.
*
* :param int led: Which LED to set. 0-10 are the LEDs on the top and 11-14 are the 4 "ambient" LEDs.
* :param float h: Hue component of the color. (0 <= h < 360)
* :param float s: Saturation component of the color. (0 <= s <= 1)
* :param float v: Value/Brightness component of the color. (0 <= v <= 0)
*/
API(API_LEDS_SET_HSV, void epic_leds_set_hsv(int led, float h, float s, float v));
/**
* Set multiple of card10's RGB LEDs to a certain color in RGB format.
*
* The first ``len`` leds are set, the remaining ones are not modified.
*
* :param uint8_t[len][r,g,b] pattern: Array with RGB Values with 0 <= len <=
* 15. 0-10 are the LEDs on the top and 11-14 are the 4 "ambient" LEDs.
* :param uint8_t len: Length of 1st dimension of ``pattern``, see above.
*/
API(API_LEDS_SET_ALL, void epic_leds_set_all(uint8_t *pattern, uint8_t len));
/**
* Set multiple of card10's RGB LEDs to a certain color in HSV format.
*
* The first ``len`` led are set, the remaining ones are not modified.
*
* :param uint8_t[len][h,s,v] pattern: Array of format with HSV Values with 0
* <= len <= 15. 0-10 are the LEDs on the top and 11-14 are the 4 "ambient"
* LEDs. (0 <= h < 360, 0 <= s <= 1, 0 <= v <= 1)
* :param uint8_t len: Length of 1st dimension of ``pattern``, see above.
*/
API(API_LEDS_SET_ALL_HSV, void epic_leds_set_all_hsv(float *pattern, uint8_t len));
/**
* Prepare one of card10's RGB LEDs to be set to a certain color in RGB format.
*
* Use :c:func:`leds_update` to apply changes.
*
* :param int led: Which LED to set. 0-10 are the LEDs on the top and 11-14
* are the 4 "ambient" LEDs.
* :param uint8_t r: Red component of the color.
* :param uint8_t g: Green component of the color.
* :param uint8_t b: Blue component of the color.
*/
API(API_LEDS_PREP, void epic_leds_prep(int led, uint8_t r, uint8_t g, uint8_t b));
/**
* Prepare one of card10's RGB LEDs to be set to a certain color in HSV format.
*
* Use :c:func:`leds_update` to apply changes.
*
* :param int led: Which LED to set. 0-10 are the LEDs on the top and 11-14
* are the 4 "ambient" LEDs.
* :param uint8_t h: Hue component of the color. (float, 0 <= h < 360)
* :param uint8_t s: Saturation component of the color. (float, 0 <= s <= 1)
* :param uint8_t v: Value/Brightness component of the color. (float, 0 <= v <= 0)
*/
API(API_LEDS_PREP_HSV, void epic_leds_prep_hsv(int led, float h, float s, float v));
/**
* Set global brightness for top RGB LEDs.
*
* Aside from PWM, the RGB LEDs' overall brightness can be controlled with a
* current limiter independently to achieve a higher resolution at low
* brightness which can be set with this function.
*
* :param uint8_t value: Global brightness of top LEDs. (1 <= value <= 8, default = 1)
*/
API(API_LEDS_DIM_BOTTOM, void epic_leds_dim_bottom(uint8_t value));
/**
* Set global brightness for bottom RGB LEDs.
*
* Aside from PWM, the RGB LEDs' overall brightness can be controlled with a
* current limiter independently to achieve a higher resolution at low
* brightness which can be set with this function.
*
* :param uint8_t value: Global brightness of bottom LEDs. (1 <= value <= 8, default = 8)
*/
API(API_LEDS_DIM_TOP, void epic_leds_dim_top(uint8_t value));
/**
* Enables or disables powersave mode.
*
* Even when set to zero, the RGB LEDs still individually consume ~1mA.
* Powersave intelligently switches the supply power in groups. This introduces
* delays in the magnitude of ~10µs, so it can be disabled for high speed
* applications such as POV.
*
* :param bool eco: Activates powersave if true, disables it when false. (default = True)
*/
API(API_LEDS_SET_POWERSAVE, void epic_leds_set_powersave(bool eco));
/**
* Updates the RGB LEDs with changes that have been set with :c:func:`leds_prep`
* or :c:func:`leds_prep_hsv`.
*
* The LEDs can be only updated in bulk, so using this approach instead of
* :c:func:`leds_set` or :c:func:`leds_set_hsv` significantly reduces the load
* on the corresponding hardware bus.
*/
API(API_LEDS_UPDATE, void epic_leds_update(void));
/**
* Set the brightness of one of the rocket LEDs.
*
* :param int led: Which LED to set.
*
* +-------+--------+----------+
* | ID | Color | Location |
* +=======+========+==========+
* | ``0`` | Blue | Left |
* +-------+--------+----------+
* | ``1`` | Yellow | Top |
* +-------+--------+----------+
* | ``2`` | Green | Right |
* +-------+--------+----------+
* :param uint8_t value: Brightness of LED (value between 0 and 31).
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
*/
API(API_LEDS_SET_ROCKET, void epic_leds_set_rocket(int led, uint8_t value));
/**
* Turn on the bright side LED which can serve as a flashlight if worn on the left wrist or as a rad tattoo illuminator if worn on the right wrist.
*
*:param bool power: Side LED on if true.
*/
API(API_LEDS_SET_FLASHLIGHT, void epic_set_flashlight(bool power));
/**
* Set gamma lookup table for individual rgb channels.
*
* Since the RGB LEDs' subcolor LEDs have different peak brightness and the
* linear scaling introduced by PWM is not desireable for color accurate work,
* custom lookup tables for each individual color channel can be loaded into the
* Epicardium's memory with this function.
*
* :param uint8_t rgb_channel: Color whose gamma table is to be updated, 0->Red, 1->Green, 2->Blue.
* :param uint8_t[256] gamma_table: Gamma lookup table. (default = 4th order power function rounded up)
*/
API(API_LEDS_SET_GAMMA_TABLE, void epic_leds_set_gamma_table(
uint8_t rgb_channel,
uint8_t *gamma_table
));
/**
* Set all LEDs to a certain RGB color.
*
* :param uint8_t r: Value for the red color channel.
* :param uint8_t g: Value for the green color channel.
* :param uint8_t b: Value for the blue color channel.
*/
API(API_LEDS_CLEAR_ALL, void epic_leds_clear_all(uint8_t r, uint8_t g, uint8_t b));
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
/**
* BME680
* ======
*/
/**
* BME680 Sensor Data
*/
struct bme680_sensor_data {
/** Temperature in degree celsius */
float temperature;
/** Humidity in % relative humidity */
float humidity;
/** Pressure in hPa */
float pressure;
/** Gas resistance in Ohms */
float gas_resistance;
};
/**
* Initialize the BM680 sensor.
*
* :return: 0 on success or ``-Exxx`` on error. The following
* errors might occur:
*
* - ``-EFAULT``: On NULL-pointer.
* - ``-EINVAL``: Invalid configuration.
* - ``-EIO``: Communication with the device failed.
* - ``-ENODEV``: Device was not found.
*/
API(API_BME680_INIT, int epic_bme680_init());
/**
* De-Initialize the BM680 sensor.
*
* :return: 0 on success or ``-Exxx`` on error. The following
* errors might occur:
*
* - ``-EFAULT``: On NULL-pointer.
* - ``-EINVAL``: Invalid configuration.
* - ``-EIO``: Communication with the device failed.
* - ``-ENODEV``: Device was not found.
*/
API(API_BME680_DEINIT, int epic_bme680_deinit());
/**
* Get the current BME680 data.
*
* :param data: Where to store the environmental data.
* :return: 0 on success or ``-Exxx`` on error. The following
* errors might occur:
*
* - ``-EFAULT``: On NULL-pointer.
* - ``-EINVAL``: Sensor not initialized.
* - ``-EIO``: Communication with the device failed.
* - ``-ENODEV``: Device was not found.
*/
API(API_BME680_GET_DATA,
int epic_bme680_read_sensors(struct bme680_sensor_data *data));
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/**
* Personal State
* ==============
* Card10 can display your personal state.
*
* If a personal state is set the top-left LED on the bottom side of the
* harmonics board is directly controlled by epicardium and it can't be
* controlled by pycardium.
*
* To re-enable pycardium control the personal state has to be cleared. To do
* that simply set it to ``STATE_NONE``.
*
* The personal state can be set to be persistent which means it won't get reset
* on pycardium application change/restart.
*/
/** Possible personal states. */
enum personal_state {
/** ``0``, No personal state - LED is under regular application control. */
STATE_NONE = 0,
/** ``1``, "no contact, please!" - I am overloaded. Please leave me be - red led, continuously on. */
STATE_NO_CONTACT = 1,
/** ``2``, "chaos" - Adventure time - blue led, short blink, long blink. */
STATE_CHAOS = 2,
/** ``3``, "communication" - want to learn something or have a nice conversation - green led, long blinks. */
STATE_COMMUNICATION = 3,
/** ``4``, "camp" - I am focussed on self-, camp-, or community maintenance - yellow led, fade on and off. */
STATE_CAMP = 4,
};
/**
* Set the users personal state.
*
* Using :c:func:`epic_personal_state_set` an application can set the users personal state.
*
* :param uint8_t state: The users personal state. Must be one of :c:type:`personal_state`.
* :param bool persistent: Indicates whether the configured personal state will remain set and active on pycardium application restart/change.
* :returns: ``0`` on success, ``-EINVAL`` if an invalid state was requested.
*/
API(API_PERSONAL_STATE_SET, int epic_personal_state_set(uint8_t state,
bool persistent));
/**
* Get the users personal state.
*
* Using :c:func:`epic_personal_state_get` an application can get the currently set personal state of the user.
*
* :returns: A value with exactly one value of :c:type:`personal_state` set.
*/
API(API_PERSONAL_STATE_GET, int epic_personal_state_get());
/**
* Get whether the users personal state is persistent.
*
* Using :c:func:`epic_personal_state_is_persistent` an app can find out whether the users personal state is persistent or transient.
*
* :returns: ``1`` if the state is persistent, ``0`` otherwise.
*/
API(API_PERSONAL_STATE_IS_PERSISTENT, int epic_personal_state_is_persistent());
/**
* Sensor Data Streams
* ===================
* A few of card10's sensors can do continuous measurements. To allow
* performant access to their data, the following function is made for generic
* access to streams.
*/
/**
* Read sensor data into a buffer. ``epic_stream_read()`` will read as many
* sensor samples into the provided buffer as possible and return the number of
* samples written. If no samples are available, ``epic_stream_read()`` will
* return ``0`` immediately.
*
* ``epic_stream_read()`` expects the provided buffer to have a size which is a
* multiple of the sample size for the given stream. For the sample-format and
* size, please consult the sensors documentation.
*
* Before reading the internal sensor sample queue, ``epic_stream_read()`` will
* call a sensor specific *poll* function to allow the sensor driver to fetch
* new samples from its hardware. This should, however, never take a long
* amount of time.
*
* :param int sd: Sensor Descriptor. You get sensor descriptors as return
* values when activating the respective sensors.
* :param void* buf: Buffer where sensor data should be read into.
* :param size_t count: How many bytes to read at max. Note that fewer bytes
* might be read. In most cases, this should be ``sizeof(buf)``.
* :return: Number of data packets read (**not** number of bytes) or a negative
* error value. Possible errors:
*
* - ``-ENODEV``: Sensor is not currently available.
* - ``-EBADF``: The given sensor descriptor is unknown.
* - ``-EINVAL``: ``count`` is not a multiple of the sensor's sample size.
* - ``-EBUSY``: The descriptor table lock could not be acquired.
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
*
* **Example**:
*
* .. code-block:: cpp
*
* #include "epicardium.h"
*
* struct foo_measurement sensor_data[16];
* int foo_sd, n;
*
* foo_sd = epic_foo_sensor_enable(9001);
*
* while (1) {
* n = epic_stream_read(
* foo_sd,
* &sensor_data,
* sizeof(sensor_data)
* );
*
* // Print out the measured sensor samples
* for (int i = 0; i < n; i++) {
* printf("Measured: %?\n", sensor_data[i]);
* }
* }
*/
API(API_STREAM_READ, int epic_stream_read(int sd, void *buf, size_t count));
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
/**
* BHI160 Sensor Fusion
* ====================
* card10 has a BHI160 onboard which is used as an IMU. BHI160 exposes a few
* different sensors which can be accessed using Epicardium API.
*
* **Example**:
*
* .. code-block:: cpp
*
* #include "epicardium.h"
*
* // Configure a sensor & enable it
* struct bhi160_sensor_config cfg = {0};
* cfg.sample_buffer_len = 40;
* cfg.sample_rate = 4; // Hz
* cfg.dynamic_range = 2; // g
*
* int sd = epic_bhi160_enable_sensor(BHI160_ACCELEROMETER, &cfg);
*
* // Read sensor data
* while (1) {
* struct bhi160_data_vector buf[10];
*
* int n = epic_stream_read(sd, buf, sizeof(buf));
*
* for (int i = 0; i < n; i++) {
* printf("X: %6d Y: %6d Z: %6d\n",
* buf[i].x,
* buf[i].y,
* buf[i].z);
* }
* }
*
* // Disable the sensor
* epic_bhi160_disable_sensor(BHI160_ACCELEROMETER);
*/
/**
* BHI160 Sensor Types
* -------------------
*/
/**
* BHI160 virtual sensor type.
*/
enum bhi160_sensor_type {
/**
* Accelerometer
*
* - Data type: :c:type:`bhi160_data_vector`
* - Dynamic range: g's (1x Earth Gravity, ~9.81m*s^-2)
*/
BHI160_ACCELEROMETER = 0,
/** Magnetometer (**Unimplemented**) */
BHI160_MAGNETOMETER = 1,
BHI160_GYROSCOPE = 3,
/** Gravity (**Unimplemented**) */
BHI160_GRAVITY = 4,
/** Linear acceleration (**Unimplemented**) */
BHI160_LINEAR_ACCELERATION = 5,
/** Rotation vector (**Unimplemented**) */
BHI160_ROTATION_VECTOR = 6,
/** Uncalibrated magnetometer (**Unimplemented**) */
BHI160_UNCALIBRATED_MAGNETOMETER = 7,
/** Game rotation vector (whatever that is supposed to be) */
BHI160_GAME_ROTATION_VECTOR = 8,
/** Uncalibrated gyroscrope (**Unimplemented**) */
BHI160_UNCALIBRATED_GYROSCOPE = 9,
/** Geomagnetic rotation vector (**Unimplemented**) */
BHI160_GEOMAGNETIC_ROTATION_VECTOR = 10,
};
enum bhi160_data_type {
BHI160_DATA_TYPE_VECTOR
};
/**
* BHI160 Sensor Data Types
* ------------------------
*/
/**
* Vector Data. The scaling of these values is dependent on the chosen dynamic
* range. See the individual sensor's documentation for details.
*/
struct bhi160_data_vector {
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/** X */
int16_t x;
/** Y */
int16_t y;
/** Z */
int16_t z;
};
/**
* BHI160 API
* ----------
*/
/**
* Configuration for a BHI160 sensor.
*
* This struct is used when enabling a sensor using
* :c:func:`epic_bhi160_enable_sensor`.
*/
struct bhi160_sensor_config {
/**
* Number of samples Epicardium should keep for this sensor. Do not set
* this number too high as the sample buffer will eat RAM.
*/
size_t sample_buffer_len;
/**
* Sample rate for the sensor in Hz. Maximum data rate is limited
* to 200 Hz for all sensors though some might be limited at a lower
* rate.
*/
uint16_t sample_rate;
/**
* Dynamic range. Interpretation of this value depends on
* the sensor type. Please refer to the specific sensor in
* :c:type:`bhi160_sensor_type` for details.
*/
uint16_t dynamic_range;