Skip to content
Snippets Groups Projects
Select Git revision
  • 71be1ddeb128e6068d2f1df605ec9c8c10f67091
  • master default protected
  • schneider/ir
  • rahix/user-space-ctx
  • schneider/iaq-python
  • schneider/ble-mini-demo
  • schneider/ble-ecg-stream-visu
  • schneider/mp-exception-print
  • schneider/sleep-display
  • schneider/deepsleep4
  • schneider/deepsleep2
  • schneider/deepsleep
  • schneider/ble-central
  • rahix/bluetooth-app-favorite
  • schneider/v1.17-changelog
  • schneider/ancs
  • schneider/png
  • schneider/freertos-list-debug
  • schneider/212-reset-hardware-when-entering-repl
  • schneider/bonding-fail-if-full
  • schneider/ble-fixes-2020-3
  • v1.18
  • v1.17
  • v1.16
  • v1.15
  • v1.14
  • v1.13
  • v1.12
  • v1.11
  • v1.10
  • v1.9
  • v1.8
  • v1.7
  • v1.6
  • v1.5
  • v1.4
  • v1.3
  • v1.2
  • v1.1
  • v1.0
  • release-1
41 results

group__RPU__WUT.html

Blame
  • modpyb.c 22.81 KiB
    /*
     * This file is part of the Micro Python project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2013, 2014 Damien P. George
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <stdint.h>
    #include <stdio.h>
    
    #include STM32_HAL_H
    
    #include "py/mpstate.h"
    #include "py/nlr.h"
    #include "py/obj.h"
    #include "py/gc.h"
    #include "lib/fatfs/ff.h"
    #include "lib/fatfs/diskio.h"
    #include "gccollect.h"
    #include "irq.h"
    #include "systick.h"
    #include "pyexec.h"
    #include "led.h"
    #include "pin.h"
    #include "timer.h"
    #include "extint.h"
    #include "usrsw.h"
    #include "rng.h"
    #include "rtc.h"
    #include "i2c.h"
    #include "spi.h"
    #include "uart.h"
    #include "can.h"
    #include "adc.h"
    #include "storage.h"
    #include "sdcard.h"
    #include "accel.h"
    #include "servo.h"
    #include "dac.h"
    #include "lcd.h"
    #include "usb.h"
    #include "fsusermount.h"
    #include "portmodules.h"
    
    /// \module pyb - functions related to the pyboard
    ///
    /// The `pyb` module contains specific functions related to the pyboard.
    
    /// \function bootloader()
    /// Activate the bootloader without BOOT* pins.
    STATIC NORETURN mp_obj_t pyb_bootloader(void) {
        pyb_usb_dev_deinit();
        storage_flush();
    
        HAL_RCC_DeInit();
        HAL_DeInit();
    
    #if defined(STM32F7)
        // arm-none-eabi-gcc 4.9.0 does not correctly inline this
        // MSP function, so we write it out explicitly here.
        //__set_MSP(*((uint32_t*) 0x1FF00000));
        __ASM volatile ("movw r3, #0x0000\nmovt r3, #0x1FF0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");
    
        ((void (*)(void)) *((uint32_t*) 0x1FF00004))();
    #else
        __HAL_REMAPMEMORY_SYSTEMFLASH();
    
        // arm-none-eabi-gcc 4.9.0 does not correctly inline this
        // MSP function, so we write it out explicitly here.
        //__set_MSP(*((uint32_t*) 0x00000000));
        __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");
    
        ((void (*)(void)) *((uint32_t*) 0x00000004))();
    #endif
    
        while (1);
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
    
    /// \function hard_reset()
    /// Resets the pyboard in a manner similar to pushing the external RESET
    /// button.
    STATIC mp_obj_t pyb_hard_reset(void) {
        NVIC_SystemReset();
        return mp_const_none;
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_hard_reset_obj, pyb_hard_reset);
    
    /// \function info([dump_alloc_table])
    /// Print out lots of information about the board.
    STATIC mp_obj_t pyb_info(mp_uint_t n_args, const mp_obj_t *args) {
        // get and print unique id; 96 bits
        {
            byte *id = (byte*)0x1fff7a10;
            printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
        }
    
        // get and print clock speeds
        // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
        {
            printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
                   HAL_RCC_GetSysClockFreq(),
                   HAL_RCC_GetHCLKFreq(),
                   HAL_RCC_GetPCLK1Freq(),
                   HAL_RCC_GetPCLK2Freq());
        }
    
        // to print info about memory
        {
            printf("_etext=%p\n", &_etext);
            printf("_sidata=%p\n", &_sidata);
            printf("_sdata=%p\n", &_sdata);
            printf("_edata=%p\n", &_edata);
            printf("_sbss=%p\n", &_sbss);
            printf("_ebss=%p\n", &_ebss);
            printf("_estack=%p\n", &_estack);
            printf("_ram_start=%p\n", &_ram_start);
            printf("_heap_start=%p\n", &_heap_start);
            printf("_heap_end=%p\n", &_heap_end);
            printf("_ram_end=%p\n", &_ram_end);
        }
    
        // qstr info
        {
            mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
            qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
            printf("qstr:\n  n_pool=" UINT_FMT "\n  n_qstr=" UINT_FMT "\n  n_str_data_bytes=" UINT_FMT "\n  n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
        }
    
        // GC info
        {
            gc_info_t info;
            gc_info(&info);
            printf("GC:\n");
            printf("  " UINT_FMT " total\n", info.total);
            printf("  " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
            printf("  1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
        }
    
        // free space on flash
        {
            DWORD nclst;
            FATFS *fatfs;
            f_getfree("/flash", &nclst, &fatfs);
            printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
        }
    
        if (n_args == 1) {
            // arg given means dump gc allocation table
            gc_dump_alloc_table();
        }
    
        return mp_const_none;
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
    
    /// \function unique_id()
    /// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
    STATIC mp_obj_t pyb_unique_id(void) {
        byte *id = (byte*)0x1fff7a10;
        return mp_obj_new_bytes(id, 12);
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);
    
    // get or set the MCU frequencies
    STATIC mp_uint_t pyb_freq_calc_ahb_div(mp_uint_t wanted_div) {
        if (wanted_div <= 1) { return RCC_SYSCLK_DIV1; }
        else if (wanted_div <= 2) { return RCC_SYSCLK_DIV2; }
        else if (wanted_div <= 4) { return RCC_SYSCLK_DIV4; }
        else if (wanted_div <= 8) { return RCC_SYSCLK_DIV8; }
        else if (wanted_div <= 16) { return RCC_SYSCLK_DIV16; }
        else if (wanted_div <= 64) { return RCC_SYSCLK_DIV64; }
        else if (wanted_div <= 128) { return RCC_SYSCLK_DIV128; }
        else if (wanted_div <= 256) { return RCC_SYSCLK_DIV256; }
        else { return RCC_SYSCLK_DIV512; }
    }
    STATIC mp_uint_t pyb_freq_calc_apb_div(mp_uint_t wanted_div) {
        if (wanted_div <= 1) { return RCC_HCLK_DIV1; }
        else if (wanted_div <= 2) { return RCC_HCLK_DIV2; }
        else if (wanted_div <= 4) { return RCC_HCLK_DIV4; }
        else if (wanted_div <= 8) { return RCC_HCLK_DIV8; }
        else { return RCC_SYSCLK_DIV16; }
    }
    STATIC mp_obj_t pyb_freq(mp_uint_t n_args, const mp_obj_t *args) {
        if (n_args == 0) {
            // get
            mp_obj_t tuple[4] = {
               mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
               mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
               mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
               mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
            };
            return mp_obj_new_tuple(4, tuple);
        } else {
            // set
            mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000;
    
            // default PLL parameters that give 48MHz on PLL48CK
            uint32_t m = HSE_VALUE / 1000000, n = 336, p = 2, q = 7;
            uint32_t sysclk_source;
    
            // the following logic assumes HSE < HSI
            if (HSE_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < HSI_VALUE / 1000000) {
                // use HSE as SYSCLK
                sysclk_source = RCC_SYSCLKSOURCE_HSE;
            } else if (HSI_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < 24) {
                // use HSI as SYSCLK
                sysclk_source = RCC_SYSCLKSOURCE_HSI;
            } else {
                // search for a valid PLL configuration that keeps USB at 48MHz
                for (; wanted_sysclk > 0; wanted_sysclk--) {
                    for (p = 2; p <= 8; p += 2) {
                        // compute VCO_OUT
                        mp_uint_t vco_out = wanted_sysclk * p;
                        // make sure VCO_OUT is between 192MHz and 432MHz
                        if (vco_out < 192 || vco_out > 432) {
                            continue;
                        }
                        // make sure Q is an integer
                        if (vco_out % 48 != 0) {
                            continue;
                        }
                        // solve for Q to get PLL48CK at 48MHz
                        q = vco_out / 48;
                        // make sure Q is in range
                        if (q < 2 || q > 15) {
                            continue;
                        }
                        // make sure N/M is an integer
                        if (vco_out % (HSE_VALUE / 1000000) != 0) {
                            continue;
                        }
                        // solve for N/M
                        mp_uint_t n_by_m = vco_out / (HSE_VALUE / 1000000);
                        // solve for M, making sure VCO_IN (=HSE/M) is between 1MHz and 2MHz
                        m = 192 / n_by_m;
                        while (m < (HSE_VALUE / 2000000) || n_by_m * m < 192) {
                            m += 1;
                        }
                        if (m > (HSE_VALUE / 1000000)) {
                            continue;
                        }
                        // solve for N
                        n = n_by_m * m;
                        // make sure N is in range
                        if (n < 192 || n > 432) {
                            continue;
                        }
    
                        // found values!
                        sysclk_source = RCC_SYSCLKSOURCE_PLLCLK;
                        goto set_clk;
                    }
                }
                nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't make valid freq"));
            }
    
        set_clk:
            //printf("%lu %lu %lu %lu %lu\n", sysclk_source, m, n, p, q);
    
            // let the USB CDC have a chance to process before we change the clock
            HAL_Delay(USBD_CDC_POLLING_INTERVAL + 2);
    
            // desired system clock source is in sysclk_source
            RCC_ClkInitTypeDef RCC_ClkInitStruct;
            RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
            if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
                // set HSE as system clock source to allow modification of the PLL configuration
                // we then change to PLL after re-configuring PLL
                RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
            } else {
                // directly set the system clock source as desired
                RCC_ClkInitStruct.SYSCLKSource = sysclk_source;
            }
            wanted_sysclk *= 1000000;
            if (n_args >= 2) {
                // note: AHB freq required to be >= 14.2MHz for USB operation
                RCC_ClkInitStruct.AHBCLKDivider = pyb_freq_calc_ahb_div(wanted_sysclk / mp_obj_get_int(args[1]));
            } else {
                RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
            }
            if (n_args >= 3) {
                RCC_ClkInitStruct.APB1CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[2]));
            } else {
                RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
            }
            if (n_args >= 4) {
                RCC_ClkInitStruct.APB2CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[3]));
            } else {
                RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
            }
            if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
                goto fail;
            }
    
            // re-configure PLL
            // even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO
            RCC_OscInitTypeDef RCC_OscInitStruct;
            RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
            RCC_OscInitStruct.HSEState = RCC_HSE_ON;
            RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
            RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
            RCC_OscInitStruct.PLL.PLLM = m;
            RCC_OscInitStruct.PLL.PLLN = n;
            RCC_OscInitStruct.PLL.PLLP = p;
            RCC_OscInitStruct.PLL.PLLQ = q;
            if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
                goto fail;
            }
    
            // set PLL as system clock source if wanted
            if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
                RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
                RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
                if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
                    goto fail;
                }
            }
    
            // re-init TIM3 for USB CDC rate
            timer_tim3_init();
    
            return mp_const_none;
    
        fail:;
            void NORETURN __fatal_error(const char *msg);
            __fatal_error("can't change freq");
        }
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_freq_obj, 0, 4, pyb_freq);
    
    /// \function millis()
    /// Returns the number of milliseconds since the board was last reset.
    ///
    /// The result is always a micropython smallint (31-bit signed number), so
    /// after 2^30 milliseconds (about 12.4 days) this will start to return
    /// negative numbers.
    STATIC mp_obj_t pyb_millis(void) {
        // We want to "cast" the 32 bit unsigned into a small-int.  This means
        // copying the MSB down 1 bit (extending the sign down), which is
        // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
        return MP_OBJ_NEW_SMALL_INT(HAL_GetTick());
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);
    
    /// \function elapsed_millis(start)
    /// Returns the number of milliseconds which have elapsed since `start`.
    ///
    /// This function takes care of counter wrap, and always returns a positive
    /// number. This means it can be used to measure periods upto about 12.4 days.
    ///
    /// Example:
    ///     start = pyb.millis()
    ///     while pyb.elapsed_millis(start) < 1000:
    ///         # Perform some operation
    STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
        uint32_t startMillis = mp_obj_get_int(start);
        uint32_t currMillis = HAL_GetTick();
        return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);
    
    /// \function micros()
    /// Returns the number of microseconds since the board was last reset.
    ///
    /// The result is always a micropython smallint (31-bit signed number), so
    /// after 2^30 microseconds (about 17.8 minutes) this will start to return
    /// negative numbers.
    STATIC mp_obj_t pyb_micros(void) {
        // We want to "cast" the 32 bit unsigned into a small-int.  This means
        // copying the MSB down 1 bit (extending the sign down), which is
        // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
        return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds());
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);
    
    /// \function elapsed_micros(start)
    /// Returns the number of microseconds which have elapsed since `start`.
    ///
    /// This function takes care of counter wrap, and always returns a positive
    /// number. This means it can be used to measure periods upto about 17.8 minutes.
    ///
    /// Example:
    ///     start = pyb.micros()
    ///     while pyb.elapsed_micros(start) < 1000:
    ///         # Perform some operation
    STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
        uint32_t startMicros = mp_obj_get_int(start);
        uint32_t currMicros = sys_tick_get_microseconds();
        return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);
    
    /// \function delay(ms)
    /// Delay for the given number of milliseconds.
    STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
        mp_int_t ms = mp_obj_get_int(ms_in);
        if (ms >= 0) {
            HAL_Delay(ms);
        }
        return mp_const_none;
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);
    
    /// \function udelay(us)
    /// Delay for the given number of microseconds.
    STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
        mp_int_t usec = mp_obj_get_int(usec_in);
        if (usec > 0) {
            sys_tick_udelay(usec);
        }
        return mp_const_none;
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);
    
    /// \function stop()
    STATIC mp_obj_t pyb_stop(void) {
        // takes longer to wake but reduces stop current
        HAL_PWREx_EnableFlashPowerDown();
    
        HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
    
        // reconfigure the system clock after waking up
    
        // enable HSE
        __HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
        while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) {
        }
    
        // enable PLL
        __HAL_RCC_PLL_ENABLE();
        while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) {
        }
    
        // select PLL as system clock source
        MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
        while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {
        }
    
        return mp_const_none;
    }
    MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);
    
    /// \function standby()
    STATIC mp_obj_t pyb_standby(void) {
    #if defined(STM32F7)
        printf("pyb.standby not supported yet\n");
    #else
        // We need to clear the PWR wake-up-flag before entering standby, since
        // the flag may have been set by a previous wake-up event.  Furthermore,
        // we need to disable the wake-up sources while clearing this flag, so
        // that if a source is active it does actually wake the device.
        // See section 5.3.7 of RM0090.
    
        // Note: we only support RTC ALRA, ALRB, WUT and TS.
        // TODO support TAMP and WKUP (PA0 external pin).
        uint32_t irq_bits = RTC_CR_ALRAIE | RTC_CR_ALRBIE | RTC_CR_WUTIE | RTC_CR_TSIE;
    
        // save RTC interrupts
        uint32_t save_irq_bits = RTC->CR & irq_bits;
    
        // disable RTC interrupts
        RTC->CR &= ~irq_bits;
    
        // clear RTC wake-up flags
        RTC->ISR &= ~(RTC_ISR_ALRAF | RTC_ISR_ALRBF | RTC_ISR_WUTF | RTC_ISR_TSF);
    
        // clear global wake-up flag
        PWR->CR |= PWR_CR_CWUF;
    
        // enable previously-enabled RTC interrupts
        RTC->CR |= save_irq_bits;
    
        // enter standby mode
        HAL_PWR_EnterSTANDBYMode();
        // we never return; MCU is reset on exit from standby
    #endif
        return mp_const_none;
    }
    MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);
    
    /// \function repl_uart(uart)
    /// Get or set the UART object that the REPL is repeated on.
    STATIC mp_obj_t pyb_repl_uart(mp_uint_t n_args, const mp_obj_t *args) {
        if (n_args == 0) {
            if (MP_STATE_PORT(pyb_stdio_uart) == NULL) {
                return mp_const_none;
            } else {
                return MP_STATE_PORT(pyb_stdio_uart);
            }
        } else {
            if (args[0] == mp_const_none) {
                MP_STATE_PORT(pyb_stdio_uart) = NULL;
            } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
                MP_STATE_PORT(pyb_stdio_uart) = args[0];
            } else {
                nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
            }
            return mp_const_none;
        }
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);
    
    MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
    
    STATIC const mp_map_elem_t pyb_module_globals_table[] = {
        { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },
    
        { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_hard_reset), (mp_obj_t)&pyb_hard_reset_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },
    
        { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },
    
        { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
    
        { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_hid_mouse), (mp_obj_t)&pyb_usb_hid_mouse_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_hid_keyboard), (mp_obj_t)&pyb_usb_hid_keyboard_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
        { MP_OBJ_NEW_QSTR(MP_QSTR_USB_HID), (mp_obj_t)&pyb_usb_hid_type },
        // these 2 are deprecated; use USB_VCP.isconnected and USB_HID.send instead
        { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
    
        { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&mod_os_sync_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_mount), (mp_obj_t)&pyb_mount_obj },
    
        { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },
    
    #if MICROPY_HW_ENABLE_RNG
        { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
    #endif
    
    #if MICROPY_HW_ENABLE_RTC
        { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
    #endif
    
        { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
        { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },
    
    #if MICROPY_HW_ENABLE_SERVO
        { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
    #endif
    
    #if MICROPY_HW_HAS_SWITCH
        { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
    #endif
    
    #if MICROPY_HW_HAS_SDCARD
        { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
    #endif
    
    #if defined(MICROPY_HW_LED1)
        { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
    #endif
        { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
    #if !defined(STM32F7) // Temp hack
        { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
    #endif
        { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
    #if MICROPY_HW_ENABLE_CAN
        { MP_OBJ_NEW_QSTR(MP_QSTR_CAN), (mp_obj_t)&pyb_can_type },
    #endif
    
        { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
        { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
    
    #if MICROPY_HW_ENABLE_DAC
        { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
    #endif
    
    #if MICROPY_HW_HAS_MMA7660
        { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
    #endif
    
    #if MICROPY_HW_HAS_LCD
        { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
    #endif
    };
    
    STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table);
    
    const mp_obj_module_t pyb_module = {
        .base = { &mp_type_module },
        .name = MP_QSTR_pyb,
        .globals = (mp_obj_dict_t*)&pyb_module_globals,
    };