Skip to content
Snippets Groups Projects
Commit 8bb4d35f authored by schneider's avatar schneider
Browse files

add g_watch to preload

parent d8dd071a
No related branches found
No related tags found
1 merge request!396Add G-Watch to preload
#G-Watch
A gesture controlled power-saving digital clock. It can replace main.py as standard watch.
###How to use:
Hold your arm roughly straight and turn your wrist quickly. The digital clock will appear on the screen and fade out after a few seconds.
###Features:
* Gesture controlled
* Screen brightness adapts to environment brightness
Uses code from watch++
\ No newline at end of file
import buttons
import display
import ledfx
import leds
import math
import bhi160
import utime
import power
import light_sensor
disp = display.open()
sensor = 0
sensors = [{"sensor": bhi160.BHI160Orientation(sample_rate=8), "name": "Orientation"}]
DIGITS = [
(True, True, True, True, True, True, False),
(False, True, True, False, False, False, False),
(True, True, False, True, True, False, True),
(True, True, True, True, False, False, True),
(False, True, True, False, False, True, True),
(True, False, True, True, False, True, True),
(True, False, True, True, True, True, True),
(True, True, True, False, False, False, False),
(True, True, True, True, True, True, True),
(True, True, True, True, False, True, True)
]
DOW = ['Mo', 'Tu', 'We', 'Th', 'Fr', 'Sa', 'Su']
led_count = 11
b7=255 # brightness of 7-segment display 0...255
def ceil_div(a, b):
return (a + (b - 1)) // b
def tip_height(w):
return ceil_div(w, 2) - 1
def draw_tip( x, y, w, c, invert=False, swapAxes=False):
h = tip_height(w)
for dy in range(h):
for dx in range(dy + 1, w - 1 - dy):
px = x + dx
py = y + dy if not invert else y + h - 1 - dy
if swapAxes:
px, py = py, px
disp.pixel(px, py, col=c)
def draw_seg( x, y, w, h, c, swapAxes=False):
tip_h = tip_height(w)
body_h = h - 2 * tip_h
draw_tip( x, y, w, c, invert=True, swapAxes=swapAxes)
px1, px2 = x, x + (w - 1)
py1, py2 = y + tip_h, y + tip_h + (body_h - 1)
if swapAxes:
px1, px2, py1, py2 = py1, py2, px1, px2
disp.rect(px1, py1, px2, py2, col=c)
draw_tip( x, y + tip_h + body_h, w, c, invert=False, swapAxes=swapAxes)
def draw_Vseg( x, y, w, l, c):
draw_seg( x, y, w, l, c)
def draw_Hseg( x, y, w, l, c):
draw_seg( y, x, w, l, c, swapAxes=True)
def draw_grid_seg( x, y, w, l, c, swapAxes=False):
sw = w - 2
tip_h = tip_height(sw)
x = x * w
y = y * w
l = (l - 1) * w
draw_seg( x + 1, y + tip_h + 3, sw, l - 3, c, swapAxes=swapAxes)
def draw_grid_Vseg( x, y, w, l, c):
draw_grid_seg( x, y, w, l, c)
def draw_grid_Hseg( x, y, w, l, c):
draw_grid_seg( y, x, w, l, c, swapAxes=True)
def draw_grid( x1, y1, x2, y2, w, c):
for x in range(x1 * w, x2 * w):
for y in range(y1 * w, y2 * w):
if x % w == 0 or x % w == w - 1 or y % w == 0 or y % w == w - 1:
disp.pixel(x, y, col=c)
def draw_grid_7seg( x, y, w, segs, c):
if segs[0]:
draw_grid_Hseg( x, y, w, 4, c)
if segs[1]:
draw_grid_Vseg( x + 3, y, w, 4, c)
if segs[2]:
draw_grid_Vseg( x + 3, y + 3, w, 4, c)
if segs[3]:
draw_grid_Hseg( x, y + 6, w, 4, c)
if segs[4]:
draw_grid_Vseg( x, y + 3, w, 4, c)
if segs[5]:
draw_grid_Vseg( x, y, w, 4, c)
if segs[6]:
draw_grid_Hseg( x, y + 3, w, 4, c)
def render_num(num, x):
draw_grid_7seg( x, 1, 7, DIGITS[num // 10], (b7, b7, b7))
draw_grid_7seg( x + 5, 1, 7, DIGITS[num % 10], (b7, b7, b7))
def render_colon():
draw_grid_Vseg( 11, 2, 7, 2, (b7, b7, b7))
draw_grid_Vseg( 11, 4, 7, 2, (b7, b7, b7))
def render7segment():
year, month, mday, hour, min, sec, wday, yday = utime.localtime()
render_num( hour, 1)
render_num( min, 13)
if sec % 2 == 0:
render_colon()
with display.open() as disp:
disp.clear().update()
bri=0
threshold_angle=35
zn=0
yo=0 #old y value
yn=0 #new y value
yd=0 #y difference
ydl=0 #yd lpf
clock_on=utime.monotonic_ms() #time in ms when clock is turned on
timeout=7000 #time in ms how long clock will be displayed
clock_off=clock_on+timeout #time in ms when clock is turned off
fade_time=0 #fade out counter
leds.dim_top(2)
leds_on=0
p_leds_on=0
while True:
millis=utime.monotonic_ms()
lt = utime.localtime()
dow = lt[6]
#---------------------------------------- read brightness sensor
bri=light_sensor.get_reading()
bri=int(fade_time*100/1000 * bri/200) # calculate display brightness in percent (bri)
if (bri>100):
bri=100
if (bri<0):
bri=0
ledbri=((bri/2)+50)/100 # calculate led bar brightness (ledbri = 0...1)
#---------------------------------------- read buttons
pressed = buttons.read(buttons.BOTTOM_LEFT | buttons.BOTTOM_RIGHT)
p_leds_on=leds_on
if pressed & buttons.BOTTOM_LEFT != 0:
leds_on=0
disp.clear()
disp.print('LEDS OFF', posx=40, posy=30, font=2)
disp.update()
disp.backlight(brightness=50)
utime.sleep_ms(500)
disp.backlight(brightness=0)
for led in range(led_count):
leds.prep_hsv(led, [0,0,0])
disp.update()
if pressed & buttons.BOTTOM_RIGHT != 0:
leds_on=1
disp.clear()
disp.print('LEDS ON', posx=40, posy=30, font=2)
disp.update()
disp.backlight(brightness=50)
utime.sleep_ms(500)
disp.backlight(brightness=0)
#---------------------------------------- read orientation sensor
samples = sensors[sensor]["sensor"].read()
if len(samples) > 0: #get orientation sensor samples
sample = samples[0]
yo=yn #calculate absolute wrist rotation since last check
yn=sample.y+360
yd=abs(yn-yo)
yd=yd%180
yd=yd*22 #multiply rotation with amplifier
if abs(sample.z)>50: #if arm is hanging:
yd=0 #do not regard wrist rotation
ydl=ydl*.9
ydl=(yd+ydl*9)/10 #low pass filter wrist rotation
if ydl>100: #check rottion against threshold and limit value
ydl=100
if clock_on+timeout<millis:
clock_on=millis
clock_off = timeout+clock_on
#.................................... display rotation bargraph on leds // full bar == hitting threshold
if (leds_on==1):
hour = lt[3]
hue=360-(hour/24*360)
for led in range(led_count):
if(led<int(ydl/100*12)-1) or millis<clock_off-1500-((10-led)*15)+300:
leds.prep_hsv(10-led, [hue,100,ledbri])#led=0
else:
leds.prep_hsv(10-led, [0,0,0])
#---------------------------------------- display clock
disp.clear()
if clock_off>=millis:
#.................................... time
lt = utime.localtime()
year = lt[0]
month = lt[1]
day = lt[2]
hour = lt[3]
mi = lt[4]
sec = lt[5]
dow = lt[6]
fade_time = clock_off-millis-1000 #calculate fade out
if fade_time<0:
fade_time=0
if fade_time>1000:
fade_time=1000
disp.backlight(brightness=bri)
render7segment() #render time in 7-segment digiclock style
disp.print('{:02d}-{:02d}-{} {}'.format(day, month, year, DOW[dow]), posx=10, posy=67, font=2) # display date
#.................................... power
pwr=math.sqrt(power.read_battery_voltage())
#disp.print("%f" % power.read_battery_voltage(), posx=25, posy=58, font=2) # display battery voltage
full=2.0
empty=math.sqrt(3.4)
pwr=pwr-empty
full=full-empty
pwrpercent=pwr*(100.0/full)
#disp.print("%f" % pwrpercent, posx=25, posy=67, font=2) # display battery percent
if pwrpercent<0:
pwrpercent=0
if pwrpercent>100:
pwrpercent=100
disp.rect(8, 60, 153, 63, col=[100,100,100]) # draw battery bar
c=[255,0,0] #red=empty
if pwrpercent>10:
c=[255,255,0] #yellow=emptyish
if pwrpercent>25:
c=[0,255,0] #green=ok
disp.rect(8, 60, int(pwrpercent*1.43+8), 63, col=c) # draw charge bar in battery bar
#---------------------------------------- do not display clock
leds.update()
disp.update()
{"name":"G-watch","description":"#G-Watch\r\nA gesture controlled power-saving digital clock. It can replace main.py as standard watch. \r\n\r\n###How to use: \r\nHold your arm roughly straight and turn your wrist quickly. The digital clock will appear on the screen and fade out after a few seconds.\r\n\r\n###Features:\r\n* Gesture controlled\r\n* Screen brightness adapts to environment brightness\r\n\r\nUses code from watch++","category":"utility","author":"royrobotiks","revision":7}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment