Skip to content
Snippets Groups Projects
Select Git revision
  • 006ffe1561f1ba8606758c326b608f27c65adb75
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

etshal.h

Blame
  • main.c 20.51 KiB
    #include <stdio.h>
    #include <string.h>
    #include <stm32f4xx.h>
    #include <stm32f4xx_rcc.h>
    #include <stm32f4xx_syscfg.h>
    #include <stm32f4xx_gpio.h>
    #include <stm32f4xx_exti.h>
    #include <stm32f4xx_tim.h>
    #include <stm32f4xx_pwr.h>
    #include <stm32f4xx_rtc.h>
    #include <stm32f4xx_usart.h>
    #include <stm32f4xx_rng.h>
    #include <usbd_storage_msd.h>
    #include <stm_misc.h>
    #include "std.h"
    
    #include "misc.h"
    #include "ff.h"
    #include "mpconfig.h"
    #include "qstr.h"
    #include "nlr.h"
    #include "misc.h"
    #include "lexer.h"
    #include "lexerfatfs.h"
    #include "parse.h"
    #include "obj.h"
    #include "parsehelper.h"
    #include "compile.h"
    #include "runtime0.h"
    #include "runtime.h"
    #include "gc.h"
    #include "gccollect.h"
    #include "systick.h"
    #include "pendsv.h"
    #include "pyexec.h"
    #include "led.h"
    #include "servo.h"
    #include "lcd.h"
    #include "storage.h"
    #include "sdcard.h"
    #include "accel.h"
    #include "usart.h"
    #include "usb.h"
    #include "timer.h"
    #include "audio.h"
    #include "pybwlan.h"
    #include "i2c.h"
    #include "usrsw.h"
    #include "adc.h"
    #include "rtc.h"
    #include "file.h"
    
    int errno;
    
    static FATFS fatfs0;
    static FATFS fatfs1;
    
    void flash_error(int n) {
        for (int i = 0; i < n; i++) {
            led_state(PYB_LED_R1, 1);
            led_state(PYB_LED_R2, 0);
            sys_tick_delay_ms(250);
            led_state(PYB_LED_R1, 0);
            led_state(PYB_LED_R2, 1);
            sys_tick_delay_ms(250);
        }
        led_state(PYB_LED_R2, 0);
    }
    
    void __fatal_error(const char *msg) {
    #if MICROPY_HW_HAS_LCD
        lcd_print_strn("\nFATAL ERROR:\n", 14);
        lcd_print_strn(msg, strlen(msg));
    #endif
        for (;;) {
            flash_error(1);
        }
    }
    
    static mp_obj_t pyb_config_source_dir = MP_OBJ_NULL;
    static mp_obj_t pyb_config_main = MP_OBJ_NULL;
    
    mp_obj_t pyb_source_dir(mp_obj_t source_dir) {
        if (MP_OBJ_IS_STR(source_dir)) {
            pyb_config_source_dir = source_dir;
        }
        return mp_const_none;
    }
    
    mp_obj_t pyb_main(mp_obj_t main) {
        if (MP_OBJ_IS_STR(main)) {
            pyb_config_main = main;
        }
        return mp_const_none;
    }
    
    // sync all file systems
    mp_obj_t pyb_sync(void) {
        storage_flush();
        return mp_const_none;
    }
    
    mp_obj_t pyb_delay(mp_obj_t count) {
        sys_tick_delay_ms(mp_obj_get_int(count));
        return mp_const_none;
    }
    
    void fatality(void) {
        led_state(PYB_LED_R1, 1);
        led_state(PYB_LED_G1, 1);
        led_state(PYB_LED_R2, 1);
        led_state(PYB_LED_G2, 1);
    }
    
    static const char fresh_boot_py[] =
    "# boot.py -- run on boot-up\n"
    "# can run arbitrary Python, but best to keep it minimal\n"
    "\n"
    "pyb.source_dir('/src')\n"
    "pyb.main('main.py')\n"
    "#pyb.usb_usr('VCP')\n"
    "#pyb.usb_msd(True, 'dual partition')\n"
    "#pyb.flush_cache(False)\n"
    "#pyb.error_log('error.txt')\n"
    ;
    
    static const char fresh_main_py[] =
    "# main.py -- put your code here!\n"
    ;
    
    static const char *help_text =
    "Welcome to Micro Python!\n\n"
    "This is a *very* early version of Micro Python and has minimal functionality.\n\n"
    "Specific commands for the board:\n"
    "    pyb.info()     -- print some general information\n"
    "    pyb.gc()       -- run the garbage collector\n"
    "    pyb.repl_info(<val>) -- enable/disable printing of info after each command\n"
    "    pyb.delay(<n>) -- wait for n milliseconds\n"
    "    pyb.Led(<n>)   -- create Led object for LED n (n=1,2)\n"
    "                      Led methods: on(), off()\n"
    "    pyb.Servo(<n>) -- create Servo object for servo n (n=1,2,3,4)\n"
    "                      Servo methods: angle(<x>)\n"
    "    pyb.switch()   -- return True/False if switch pressed or not\n"
    "    pyb.accel()    -- get accelerometer values\n"
    "    pyb.rand()     -- get a 16-bit random number\n"
    "    pyb.gpio(<port>)           -- get port value (port='A4' for example)\n"
    "    pyb.gpio(<port>, <val>)    -- set port value, True or False, 1 or 0\n"
    "    pyb.ADC(<port>) -- make an analog port object (port='C0' for example)\n"
    "                       ADC methods: read()\n"
    ;
    
    // get some help about available functions
    static mp_obj_t pyb_help(void) {
        printf("%s", help_text);
        return mp_const_none;
    }
    
    // get lots of info about the board
    static mp_obj_t pyb_info(void) {
        // get and print unique id; 96 bits
        {
            byte *id = (byte*)0x1fff7a10;
            printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
        }
    
        // get and print clock speeds
        // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
        {
            RCC_ClocksTypeDef rcc_clocks;
            RCC_GetClocksFreq(&rcc_clocks);
            printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency);
        }
    
        // to print info about memory
        {
            printf("_text_end=%p\n", &_text_end);
            printf("_data_start_init=%p\n", &_data_start_init);
            printf("_data_start=%p\n", &_data_start);
            printf("_data_end=%p\n", &_data_end);
            printf("_bss_start=%p\n", &_bss_start);
            printf("_bss_end=%p\n", &_bss_end);
            printf("_stack_end=%p\n", &_stack_end);
            printf("_ram_start=%p\n", &_ram_start);
            printf("_heap_start=%p\n", &_heap_start);
            printf("_heap_end=%p\n", &_heap_end);
            printf("_ram_end=%p\n", &_ram_end);
        }
    
        // qstr info
        {
            uint n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
            qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
            printf("qstr:\n  n_pool=%u\n  n_qstr=%u\n  n_str_data_bytes=%u\n  n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
        }
    
        // GC info
        {
            gc_info_t info;
            gc_info(&info);
            printf("GC:\n");
            printf("  %lu total\n", info.total);
            printf("  %lu : %lu\n", info.used, info.free);
            printf("  1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block);
        }
    
        // free space on flash
        {
            DWORD nclst;
            FATFS *fatfs;
            f_getfree("0:", &nclst, &fatfs);
            printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
        }
    
        return mp_const_none;
    }
    
    static void SYSCLKConfig_STOP(void) {
        /* After wake-up from STOP reconfigure the system clock */
        /* Enable HSE */
        RCC_HSEConfig(RCC_HSE_ON);
    
        /* Wait till HSE is ready */
        while (RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET) {
        }
    
        /* Enable PLL */
        RCC_PLLCmd(ENABLE);
    
        /* Wait till PLL is ready */
        while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) {
        }
    
        /* Select PLL as system clock source */
        RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
    
        /* Wait till PLL is used as system clock source */
        while (RCC_GetSYSCLKSource() != 0x08) {
        }
    }
    
    static mp_obj_t pyb_stop(void) {
        PWR_EnterSTANDBYMode();
        //PWR_FlashPowerDownCmd(ENABLE); don't know what the logic is with this
    
        /* Enter Stop Mode */
        PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);
    
        /* Configures system clock after wake-up from STOP: enable HSE, PLL and select 
         *        PLL as system clock source (HSE and PLL are disabled in STOP mode) */
        SYSCLKConfig_STOP();
    
        //PWR_FlashPowerDownCmd(DISABLE);
    
        return mp_const_none;
    }
    
    static mp_obj_t pyb_standby(void) {
        PWR_EnterSTANDBYMode();
        return mp_const_none;
    }
    
    mp_obj_t pyb_gpio(uint n_args, mp_obj_t *args) {
        //assert(1 <= n_args && n_args <= 2);
    
        const char *pin_name = mp_obj_str_get_str(args[0]);
        GPIO_TypeDef *port;
        switch (pin_name[0]) {
            case 'A': case 'a': port = GPIOA; break;
            case 'B': case 'b': port = GPIOB; break;
            case 'C': case 'c': port = GPIOC; break;
            default: goto pin_error;
        }
        uint pin_num = 0;
        for (const char *s = pin_name + 1; *s; s++) {
            if (!('0' <= *s && *s <= '9')) {
                goto pin_error;
            }
            pin_num = 10 * pin_num + *s - '0';
        }
        if (!(0 <= pin_num && pin_num <= 15)) {
            goto pin_error;
        }
    
        if (n_args == 1) {
            // get pin
            if ((port->IDR & (1 << pin_num)) != (uint32_t)Bit_RESET) {
                return MP_OBJ_NEW_SMALL_INT(1);
            } else {
                return MP_OBJ_NEW_SMALL_INT(0);
            }
        } else {
            // set pin
            if (rt_is_true(args[1])) {
                // set pin high
                port->BSRRL = 1 << pin_num;
            } else {
                // set pin low
                port->BSRRH = 1 << pin_num;
            }
            return mp_const_none;
        }
    
    pin_error:
        nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %s does not exist", pin_name));
    }
    
    MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_gpio_obj, 1, 2, pyb_gpio);
    
    mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
        mp_obj_t *items = mp_obj_get_array_fixed_n(arg, 4);
        uint8_t data[4];
        data[0] = mp_obj_get_int(items[0]);
        data[1] = mp_obj_get_int(items[1]);
        data[2] = mp_obj_get_int(items[2]);
        data[3] = mp_obj_get_int(items[3]);
        usb_hid_send_report(data);
        return mp_const_none;
    }
    
    mp_obj_t pyb_rng_get(void) {
        return mp_obj_new_int(RNG_GetRandomNumber() >> 16);
    }
    
    mp_obj_t pyb_millis(void) {
        return mp_obj_new_int(sys_tick_counter);
    }
    
    int main(void) {
        // TODO disable JTAG
    
        // update the SystemCoreClock variable
        SystemCoreClockUpdate();
    
        // set interrupt priority config to use all 4 bits for pre-empting
        NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);
    
        // enable the CCM RAM and the GPIO's
        RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIODEN;
    
    #if MICROPY_HW_HAS_SDCARD
        {
            // configure SDIO pins to be high to start with (apparently makes it more robust)
            // FIXME this is not making them high, it just makes them outputs...
            GPIO_InitTypeDef GPIO_InitStructure;
            GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12;
            GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
            GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
            GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
            GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
            GPIO_Init(GPIOC, &GPIO_InitStructure);
    
            // Configure PD.02 CMD line
            GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
            GPIO_Init(GPIOD, &GPIO_InitStructure);
        }
    #endif
    #if defined(NETDUINO_PLUS_2)
        {
            GPIO_InitTypeDef GPIO_InitStructure;
            GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
            GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
            GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
            GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
    
    #if MICROPY_HW_HAS_SDCARD
            // Turn on the power enable for the sdcard (PB1)
            GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
            GPIO_Init(GPIOB, &GPIO_InitStructure);
            GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
    #endif
    
            // Turn on the power for the 5V on the expansion header (PB2)
            GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
            GPIO_Init(GPIOB, &GPIO_InitStructure);
            GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET);
        }
    #endif
    
        // basic sub-system init
        sys_tick_init();
        pendsv_init();
        led_init();
    
    #if MICROPY_HW_ENABLE_RTC
        rtc_init();
    #endif
    
        // turn on LED to indicate bootup
        led_state(PYB_LED_G1, 1);
    
        // more sub-system init
    #if MICROPY_HW_HAS_SWITCH
        switch_init();
    #endif
    #if MICROPY_HW_HAS_SDCARD
        sdcard_init();
    #endif
        storage_init();
    
        // uncomment these 2 lines if you want REPL on USART_6 (or another usart) as well as on USB VCP
        //pyb_usart_global_debug = PYB_USART_3;
        //usart_init(pyb_usart_global_debug, 115200);
    
        int first_soft_reset = true;
    
    soft_reset:
    
        // GC init
        gc_init(&_heap_start, &_heap_end);
    
        // Micro Python init
        qstr_init();
        rt_init();
        mp_obj_t def_path[3];
        def_path[0] = MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_);
        def_path[1] = MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_src);
        def_path[2] = MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_lib);
        sys_path = mp_obj_new_list(3, def_path);
    
    #if MICROPY_HW_HAS_LCD
        // LCD init (just creates class, init hardware by calling LCD())
        lcd_init();
    #endif
    
    #if MICROPY_HW_ENABLE_SERVO
        // servo
        servo_init();
    #endif
    
    #if MICROPY_HW_ENABLE_AUDIO
        // audio
        audio_init();
    #endif
    
    #if MICROPY_HW_ENABLE_TIMER
        // timer
        timer_init();
    #endif
    
    #if MICROPY_HW_ENABLE_RNG
        // RNG
        RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE);
        RNG_Cmd(ENABLE);
    #endif
    
        // add some functions to the python namespace
        {
            rt_store_name(MP_QSTR_help, rt_make_function_n(0, pyb_help));
    
            mp_obj_t m = mp_obj_new_module(MP_QSTR_pyb);
            rt_store_attr(m, MP_QSTR_info, rt_make_function_n(0, pyb_info));
            rt_store_attr(m, MP_QSTR_gc, (mp_obj_t)&pyb_gc_obj);
            rt_store_attr(m, qstr_from_str("repl_info"), rt_make_function_n(1, pyb_set_repl_info));
    #if MICROPY_HW_HAS_SDCARD
            rt_store_attr(m, qstr_from_str("SD"), (mp_obj_t)&pyb_sdcard_obj);
    #endif
            rt_store_attr(m, MP_QSTR_stop, rt_make_function_n(0, pyb_stop));
            rt_store_attr(m, MP_QSTR_standby, rt_make_function_n(0, pyb_standby));
            rt_store_attr(m, MP_QSTR_source_dir, rt_make_function_n(1, pyb_source_dir));
            rt_store_attr(m, MP_QSTR_main, rt_make_function_n(1, pyb_main));
            rt_store_attr(m, MP_QSTR_sync, rt_make_function_n(0, pyb_sync));
            rt_store_attr(m, MP_QSTR_delay, rt_make_function_n(1, pyb_delay));
    #if MICROPY_HW_HAS_SWITCH
            rt_store_attr(m, MP_QSTR_switch, (mp_obj_t)&pyb_switch_obj);
    #endif
    #if MICROPY_HW_ENABLE_SERVO
            rt_store_attr(m, MP_QSTR_servo, rt_make_function_n(2, pyb_servo_set));
    #endif
            rt_store_attr(m, MP_QSTR_pwm, rt_make_function_n(2, pyb_pwm_set));
    #if MICROPY_HW_HAS_MMA7660
            rt_store_attr(m, MP_QSTR_accel, (mp_obj_t)&pyb_accel_read_obj);
            rt_store_attr(m, MP_QSTR_accel_read, (mp_obj_t)&pyb_accel_read_all_obj);
            rt_store_attr(m, MP_QSTR_accel_mode, (mp_obj_t)&pyb_accel_write_mode_obj);
    #endif
            rt_store_attr(m, MP_QSTR_hid, rt_make_function_n(1, pyb_hid_send_report));
    #if MICROPY_HW_ENABLE_RTC
            rt_store_attr(m, MP_QSTR_time, rt_make_function_n(0, pyb_rtc_read));
    #endif
    #if MICROPY_HW_ENABLE_RNG
            rt_store_attr(m, MP_QSTR_rand, rt_make_function_n(0, pyb_rng_get));
    #endif
            rt_store_attr(m, MP_QSTR_Led, (mp_obj_t)&pyb_Led_obj);
    #if MICROPY_HW_ENABLE_SERVO
            rt_store_attr(m, MP_QSTR_Servo, rt_make_function_n(1, pyb_Servo));
    #endif
            rt_store_attr(m, MP_QSTR_I2C, rt_make_function_n(2, pyb_I2C));
            rt_store_attr(m, MP_QSTR_gpio, (mp_obj_t)&pyb_gpio_obj);
            rt_store_attr(m, MP_QSTR_Usart, rt_make_function_n(2, pyb_Usart));
            rt_store_attr(m, qstr_from_str("ADC_all"), (mp_obj_t)&pyb_ADC_all_obj);
            rt_store_attr(m, MP_QSTR_ADC, (mp_obj_t)&pyb_ADC_obj);
            rt_store_attr(m, qstr_from_str("millis"), rt_make_function_n(0, pyb_millis));
            rt_store_name(MP_QSTR_pyb, m);
    
            rt_store_name(MP_QSTR_open, rt_make_function_n(2, pyb_io_open));
        }
    
        // check if user switch held (initiates reset of filesystem)
        bool reset_filesystem = false;
    #if MICROPY_HW_HAS_SWITCH
        if (switch_get()) {
            reset_filesystem = true;
            for (int i = 0; i < 50; i++) {
                if (!switch_get()) {
                    reset_filesystem = false;
                    break;
                }
                sys_tick_delay_ms(10);
            }
        }
    #endif
        // local filesystem init
        {
            // try to mount the flash
            FRESULT res = f_mount(&fatfs0, "0:", 1);
            if (!reset_filesystem && res == FR_OK) {
                // mount sucessful
            } else if (reset_filesystem || res == FR_NO_FILESYSTEM) {
                // no filesystem, so create a fresh one
                // TODO doesn't seem to work correctly when reset_filesystem is true...
    
                // LED on to indicate creation of LFS
                led_state(PYB_LED_R2, 1);
                uint32_t stc = sys_tick_counter;
    
                res = f_mkfs("0:", 0, 0);
                if (res == FR_OK) {
                    // success creating fresh LFS
                } else {
                    __fatal_error("could not create LFS");
                }
    
                // create src directory
                res = f_mkdir("0:/src");
                // ignore result from mkdir
    
                // create empty main.py
                FIL fp;
                f_open(&fp, "0:/src/main.py", FA_WRITE | FA_CREATE_ALWAYS);
                UINT n;
                f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
                // TODO check we could write n bytes
                f_close(&fp);
    
                // keep LED on for at least 200ms
                sys_tick_wait_at_least(stc, 200);
                led_state(PYB_LED_R2, 0);
            } else {
                __fatal_error("could not access LFS");
            }
        }
    
        // make sure we have a /boot.py
        {
            FILINFO fno;
            FRESULT res = f_stat("0:/boot.py", &fno);
            if (res == FR_OK) {
                if (fno.fattrib & AM_DIR) {
                    // exists as a directory
                    // TODO handle this case
                    // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
                } else {
                    // exists as a file, good!
                }
            } else {
                // doesn't exist, create fresh file
    
                // LED on to indicate creation of boot.py
                led_state(PYB_LED_R2, 1);
                uint32_t stc = sys_tick_counter;
    
                FIL fp;
                f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
                UINT n;
                f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
                // TODO check we could write n bytes
                f_close(&fp);
    
                // keep LED on for at least 200ms
                sys_tick_wait_at_least(stc, 200);
                led_state(PYB_LED_R2, 0);
            }
        }
    
        // run /boot.py
        if (!pyexec_file("0:/boot.py")) {
            flash_error(4);
        }
    
        if (first_soft_reset) {
    #if MICROPY_HW_HAS_MMA7660
            // MMA accel: init and reset address to zero
            accel_init();
    #endif
        }
    
        // turn boot-up LED off
        led_state(PYB_LED_G1, 0);
    
    #if MICROPY_HW_HAS_SDCARD
        // if an SD card is present then mount it on 1:/
        if (sdcard_is_present()) {
            FRESULT res = f_mount(&fatfs1, "1:", 1);
            if (res != FR_OK) {
                printf("[SD] could not mount SD card\n");
            } else {
                if (first_soft_reset) {
                    // use SD card as medium for the USB MSD
                    usbd_storage_select_medium(USBD_STORAGE_MEDIUM_SDCARD);
                }
            }
        }
    #endif
    
    #ifdef USE_HOST_MODE
        // USB host
        pyb_usb_host_init();
    #elif defined(USE_DEVICE_MODE)
        // USB device
        pyb_usb_dev_init();
    #endif
    
        // run main script
        {
            vstr_t *vstr = vstr_new();
            vstr_add_str(vstr, "0:/");
            if (pyb_config_source_dir == MP_OBJ_NULL) {
                vstr_add_str(vstr, "src");
            } else {
                vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_source_dir));
            }
            vstr_add_char(vstr, '/');
            if (pyb_config_main == MP_OBJ_NULL) {
                vstr_add_str(vstr, "main.py");
            } else {
                vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main));
            }
            if (!pyexec_file(vstr_str(vstr))) {
                flash_error(3);
            }
            vstr_free(vstr);
        }
    
    
    #if MICROPY_HW_HAS_MMA7660
        // HID example
        if (0) {
            uint8_t data[4];
            data[0] = 0;
            data[1] = 1;
            data[2] = -2;
            data[3] = 0;
            for (;;) {
            #if MICROPY_HW_HAS_SWITCH
                if (switch_get()) {
                    data[0] = 0x01; // 0x04 is middle, 0x02 is right
                } else {
                    data[0] = 0x00;
                }
            #else
                data[0] = 0x00;
            #endif
                accel_start(0x4c /* ACCEL_ADDR */, 1);
                accel_send_byte(0);
                accel_restart(0x4c /* ACCEL_ADDR */, 0);
                for (int i = 0; i <= 1; i++) {
                    int v = accel_read_ack() & 0x3f;
                    if (v & 0x20) {
                        v |= ~0x1f;
                    }
                    data[1 + i] = v;
                }
                accel_read_nack();
                usb_hid_send_report(data);
                sys_tick_delay_ms(15);
            }
        }
    #endif
    
    #if MICROPY_HW_HAS_WLAN
        // wifi
        pyb_wlan_init();
        pyb_wlan_start();
    #endif
    
        pyexec_repl();
    
        printf("PYB: sync filesystems\n");
        pyb_sync();
    
        printf("PYB: soft reboot\n");
    
        first_soft_reset = false;
        goto soft_reset;
    }
    
    // these 2 functions seem to actually work... no idea why
    // replacing with libgcc does not work (probably due to wrong calling conventions)
    double __aeabi_f2d(float x) {
        // TODO
        return 0.0;
    }
    
    float __aeabi_d2f(double x) {
        // TODO
        return 0.0;
    }
    
    double sqrt(double x) {
        // TODO
        return 0.0;
    }
    
    machine_float_t machine_sqrt(machine_float_t x) {
        // TODO
        return x;
    }