Skip to content
Snippets Groups Projects
Select Git revision
  • 00c0b8a989ae54f4466d15b78a2e8729baf441ef
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

set_symmetric_difference.py

Blame
  • objint.c 12.30 KiB
    /*
     * This file is part of the Micro Python project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2013, 2014 Damien P. George
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <stdlib.h>
    #include <stdint.h>
    #include <assert.h>
    #include <string.h>
    
    #include "mpconfig.h"
    #include "nlr.h"
    #include "misc.h"
    #include "qstr.h"
    #include "obj.h"
    #include "parsenum.h"
    #include "smallint.h"
    #include "mpz.h"
    #include "objint.h"
    #include "objstr.h"
    #include "runtime0.h"
    #include "runtime.h"
    
    #if MICROPY_PY_BUILTINS_FLOAT
    #include <math.h>
    #endif
    
    // This dispatcher function is expected to be independent of the implementation of long int
    STATIC mp_obj_t mp_obj_int_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
        mp_arg_check_num(n_args, n_kw, 0, 2, false);
    
        switch (n_args) {
            case 0:
                return MP_OBJ_NEW_SMALL_INT(0);
    
            case 1:
                if (MP_OBJ_IS_INT(args[0])) {
                    // already an int (small or long), just return it
                    return args[0];
                } else if (MP_OBJ_IS_STR_OR_BYTES(args[0])) {
                    // a string, parse it
                    mp_uint_t l;
                    const char *s = mp_obj_str_get_data(args[0], &l);
                    return mp_parse_num_integer(s, l, 0);
    #if MICROPY_PY_BUILTINS_FLOAT
                } else if (MP_OBJ_IS_TYPE(args[0], &mp_type_float)) {
                    return mp_obj_new_int_from_float(mp_obj_float_get(args[0]));
    #endif
                } else {
                    // try to convert to small int (eg from bool)
                    return MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(args[0]));
                }
    
            case 2:
            default: {
                // should be a string, parse it
                // TODO proper error checking of argument types
                mp_uint_t l;
                const char *s = mp_obj_str_get_data(args[0], &l);
                return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]));
            }
        }
    }
    
    void mp_obj_int_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
        // The size of this buffer is rather arbitrary. If it's not large
        // enough, a dynamic one will be allocated.
        char stack_buf[sizeof(mp_int_t) * 4];
        char *buf = stack_buf;
        mp_uint_t buf_size = sizeof(stack_buf);
        mp_uint_t fmt_size;
    
        char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0');
        print(env, "%s", str);
    
        if (buf != stack_buf) {
            m_free(buf, buf_size);
        }
    }
    
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
    typedef mp_longint_impl_t fmt_int_t;
    #else
    typedef mp_int_t fmt_int_t;
    #endif
    
    STATIC const uint8_t log_base2_floor[] = {
        0,
        0, 1, 1, 2,
        2, 2, 2, 3,
        3, 3, 3, 3,
        3, 3, 3, 4,
        4, 4, 4, 4,
        4, 4, 4, 4,
        4, 4, 4, 4,
        4, 4, 4, 5
    };
    
    STATIC uint int_as_str_size_formatted(uint base, const char *prefix, char comma) {
        if (base < 2 || base > 32) {
            return 0;
        }
    
        uint num_digits = sizeof(fmt_int_t) * 8 / log_base2_floor[base] + 1;
        uint num_commas = comma ? num_digits / 3: 0;
        uint prefix_len = prefix ? strlen(prefix) : 0;
        return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte
    }
    
    // This routine expects you to pass in a buffer and size (in *buf and *buf_size).
    // If, for some reason, this buffer is too small, then it will allocate a
    // buffer and return the allocated buffer and size in *buf and *buf_size. It
    // is the callers responsibility to free this allocated buffer.
    //
    // The resulting formatted string will be returned from this function and the
    // formatted size will be in *fmt_size.
    char *mp_obj_int_formatted(char **buf, mp_uint_t *buf_size, mp_uint_t *fmt_size, mp_const_obj_t self_in,
                               int base, const char *prefix, char base_char, char comma) {
        fmt_int_t num;
        if (MP_OBJ_IS_SMALL_INT(self_in)) {
            // A small int; get the integer value to format.
            num = mp_obj_get_int(self_in);
    #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
        } else if (MP_OBJ_IS_TYPE(self_in, &mp_type_int)) {
            // Not a small int.
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
            const mp_obj_int_t *self = self_in;
            // Get the value to format; mp_obj_get_int truncates to mp_int_t.
            num = self->val;
    #else
            // Delegate to the implementation for the long int.
            return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma);
    #endif
    #endif
        } else {
            // Not an int.
            **buf = '\0';
            *fmt_size = 0;
            return *buf;
        }
    
        char sign = '\0';
        if (num < 0) {
            num = -num;
            sign = '-';
        }
    
        uint needed_size = int_as_str_size_formatted(base, prefix, comma);
        if (needed_size > *buf_size) {
            *buf = m_new(char, needed_size);
            *buf_size = needed_size;
        }
        char *str = *buf;
    
        char *b = str + needed_size;
        *(--b) = '\0';
        char *last_comma = b;
    
        if (num == 0) {
            *(--b) = '0';
        } else {
            do {
                int c = num % base;
                num /= base;
                if (c >= 10) {
                    c += base_char - 10;
                } else {
                    c += '0';
                }
                *(--b) = c;
                if (comma && num != 0 && b > str && (last_comma - b) == 3) {
                    *(--b) = comma;
                    last_comma = b;
                }
            }
            while (b > str && num != 0);
        }
        if (prefix) {
            size_t prefix_len = strlen(prefix);
            char *p = b - prefix_len;
            if (p > str) {
                b = p;
                while (*prefix) {
                    *p++ = *prefix++;
                }
            }
        }
        if (sign && b > str) {
            *(--b) = sign;
        }
        *fmt_size = *buf + needed_size - b - 1;
    
        return b;
    }
    
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
    
    mp_int_t mp_obj_int_hash(mp_obj_t self_in) {
        return MP_OBJ_SMALL_INT_VALUE(self_in);
    }
    
    bool mp_obj_int_is_positive(mp_obj_t self_in) {
        return mp_obj_get_int(self_in) >= 0;
    }
    
    // This is called for operations on SMALL_INT that are not handled by mp_unary_op
    mp_obj_t mp_obj_int_unary_op(mp_uint_t op, mp_obj_t o_in) {
        return MP_OBJ_NULL; // op not supported
    }
    
    // This is called for operations on SMALL_INT that are not handled by mp_binary_op
    mp_obj_t mp_obj_int_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
        return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in);
    }
    
    // This is called only with strings whose value doesn't fit in SMALL_INT
    mp_obj_t mp_obj_new_int_from_str_len(const char **str, mp_uint_t len, bool neg, mp_uint_t base) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "long int not supported in this build"));
        return mp_const_none;
    }
    
    // This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
    mp_obj_t mp_obj_new_int_from_ll(long long val) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
        return mp_const_none;
    }
    
    // This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
    mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
        return mp_const_none;
    }
    
    mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) {
        // SMALL_INT accepts only signed numbers, of one bit less size
        // then word size, which totals 2 bits less for unsigned numbers.
        if ((value & (WORD_MSBIT_HIGH | (WORD_MSBIT_HIGH >> 1))) == 0) {
            return MP_OBJ_NEW_SMALL_INT(value);
        }
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
        return mp_const_none;
    }
    
    mp_obj_t mp_obj_new_int(mp_int_t value) {
        if (MP_SMALL_INT_FITS(value)) {
            return MP_OBJ_NEW_SMALL_INT(value);
        }
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
        return mp_const_none;
    }
    
    mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) {
        return MP_OBJ_SMALL_INT_VALUE(self_in);
    }
    
    mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) {
        return MP_OBJ_SMALL_INT_VALUE(self_in);
    }
    
    #if MICROPY_PY_BUILTINS_FLOAT
    mp_float_t mp_obj_int_as_float(mp_obj_t self_in) {
        return MP_OBJ_SMALL_INT_VALUE(self_in);
    }
    #endif
    
    #endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
    
    // This dispatcher function is expected to be independent of the implementation of long int
    // It handles the extra cases for integer-like arithmetic
    mp_obj_t mp_obj_int_binary_op_extra_cases(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
        if (rhs_in == mp_const_false) {
            // false acts as 0
            return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0));
        } else if (rhs_in == mp_const_true) {
            // true acts as 0
            return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1));
        } else if (op == MP_BINARY_OP_MULTIPLY) {
            if (MP_OBJ_IS_STR(rhs_in) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_bytes) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_list)) {
                // multiply is commutative for these types, so delegate to them
                return mp_binary_op(op, rhs_in, lhs_in);
            }
        }
        return MP_OBJ_NULL; // op not supported
    }
    
    // this is a classmethod
    STATIC mp_obj_t int_from_bytes(mp_uint_t n_args, const mp_obj_t *args) {
        // TODO: Support long ints
        // TODO: Support byteorder param (assumes 'little' at the moment)
        // TODO: Support signed param (assumes signed=False at the moment)
    
        // get the buffer info
        mp_buffer_info_t bufinfo;
        mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);
    
        // convert the bytes to an integer
        mp_uint_t value = 0;
        for (const byte* buf = (const byte*)bufinfo.buf + bufinfo.len - 1; buf >= (byte*)bufinfo.buf; buf--) {
            value = (value << 8) | *buf;
        }
    
        return mp_obj_new_int_from_uint(value);
    }
    
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_fun_obj, 2, 3, int_from_bytes);
    STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(int_from_bytes_obj, (const mp_obj_t)&int_from_bytes_fun_obj);
    
    STATIC mp_obj_t int_to_bytes(mp_uint_t n_args, const mp_obj_t *args) {
        // TODO: Support long ints
        // TODO: Support byteorder param (assumes 'little')
        // TODO: Support signed param (assumes signed=False)
    
        mp_int_t val = mp_obj_int_get_checked(args[0]);
        mp_int_t len = MP_OBJ_SMALL_INT_VALUE(args[1]);
    
        byte *data;
        mp_obj_t o = mp_obj_str_builder_start(&mp_type_bytes, len, &data);
        memset(data, 0, len);
    
        if (MP_ENDIANNESS_LITTLE) {
            memcpy(data, &val, len < sizeof(mp_int_t) ? len : sizeof(mp_int_t));
        } else {
            while (len--) {
                *data++ = val;
                val >>= 8;
            }
        }
    
        return mp_obj_str_builder_end(o);
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_to_bytes_obj, 2, 4, int_to_bytes);
    
    STATIC const mp_map_elem_t int_locals_dict_table[] = {
        { MP_OBJ_NEW_QSTR(MP_QSTR_from_bytes), (mp_obj_t)&int_from_bytes_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_to_bytes), (mp_obj_t)&int_to_bytes_obj },
    };
    
    STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table);
    
    const mp_obj_type_t mp_type_int = {
        { &mp_type_type },
        .name = MP_QSTR_int,
        .print = mp_obj_int_print,
        .make_new = mp_obj_int_make_new,
        .unary_op = mp_obj_int_unary_op,
        .binary_op = mp_obj_int_binary_op,
        .locals_dict = (mp_obj_t)&int_locals_dict,
    };