Skip to content
Snippets Groups Projects
Select Git revision
  • 0102ee092b590be2736521ebf165c96bcf0bcbe6
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

modcmath.c

Blame
  • modmath.c 10.57 KiB
    /*
     * This file is part of the Micro Python project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2013, 2014 Damien P. George
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include "py/builtin.h"
    #include "py/nlr.h"
    
    #if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
    
    #include <math.h>
    
    // M_PI is not part of the math.h standard and may not be defined
    #ifndef M_PI
    #define M_PI (3.14159265358979323846)
    #endif
    
    /// \module math - mathematical functions
    ///
    /// The `math` module provides some basic mathematical funtions for
    /// working with floating-point numbers.
    
    STATIC NORETURN void math_error(void) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "math domain error"));
    }
    
    #define MATH_FUN_1(py_name, c_name) \
        STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
        STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
    
    #define MATH_FUN_2(py_name, c_name) \
        STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_float(y_obj))); } \
        STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name);
    
    #define MATH_FUN_1_TO_BOOL(py_name, c_name) \
        STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \
        STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
    
    #define MATH_FUN_1_TO_INT(py_name, c_name) \
        STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { mp_int_t x = MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj)); return mp_obj_new_int(x); } \
        STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
    
    #define MATH_FUN_1_ERRCOND(py_name, c_name, error_condition) \
        STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { \
            mp_float_t x = mp_obj_get_float(x_obj); \
            if (error_condition) { \
                math_error(); \
            } \
            return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(x)); \
        } \
        STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
    
    #if MP_NEED_LOG2
    // 1.442695040888963407354163704 is 1/_M_LN2
    #define log2(x) (log(x) * 1.442695040888963407354163704)
    #endif
    
    /// \function sqrt(x)
    /// Returns the square root of `x`.
    MATH_FUN_1_ERRCOND(sqrt, sqrt, (x < (mp_float_t)0.0))
    /// \function pow(x, y)
    /// Returns `x` to the power of `y`.
    MATH_FUN_2(pow, pow)
    /// \function exp(x)
    MATH_FUN_1(exp, exp)
    #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
    /// \function expm1(x)
    MATH_FUN_1(expm1, expm1)
    /// \function log2(x)
    MATH_FUN_1_ERRCOND(log2, log2, (x <= (mp_float_t)0.0))
    /// \function log10(x)
    MATH_FUN_1_ERRCOND(log10, log10, (x <= (mp_float_t)0.0))
    /// \function cosh(x)
    MATH_FUN_1(cosh, cosh)
    /// \function sinh(x)
    MATH_FUN_1(sinh, sinh)
    /// \function tanh(x)
    MATH_FUN_1(tanh, tanh)
    /// \function acosh(x)
    MATH_FUN_1(acosh, acosh)
    /// \function asinh(x)
    MATH_FUN_1(asinh, asinh)
    /// \function atanh(x)
    MATH_FUN_1(atanh, atanh)
    #endif
    /// \function cos(x)
    MATH_FUN_1(cos, cos)
    /// \function sin(x)
    MATH_FUN_1(sin, sin)
    /// \function tan(x)
    MATH_FUN_1(tan, tan)
    /// \function acos(x)
    MATH_FUN_1(acos, acos)
    /// \function asin(x)
    MATH_FUN_1(asin, asin)
    /// \function atan(x)
    MATH_FUN_1(atan, atan)
    /// \function atan2(y, x)
    MATH_FUN_2(atan2, atan2)
    /// \function ceil(x)
    MATH_FUN_1_TO_INT(ceil, ceil)
    /// \function copysign(x, y)
    MATH_FUN_2(copysign, copysign)
    /// \function fabs(x)
    MATH_FUN_1(fabs, fabs)
    /// \function floor(x)
    MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float
    /// \function fmod(x, y)
    MATH_FUN_2(fmod, fmod)
    /// \function isfinite(x)
    MATH_FUN_1_TO_BOOL(isfinite, isfinite)
    /// \function isinf(x)
    MATH_FUN_1_TO_BOOL(isinf, isinf)
    /// \function isnan(x)
    MATH_FUN_1_TO_BOOL(isnan, isnan)
    /// \function trunc(x)
    MATH_FUN_1_TO_INT(trunc, trunc)
    /// \function ldexp(x, exp)
    MATH_FUN_2(ldexp, ldexp)
    #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
    /// \function erf(x)
    /// Return the error function of `x`.
    MATH_FUN_1(erf, erf)
    /// \function erfc(x)
    /// Return the complementary error function of `x`.
    MATH_FUN_1(erfc, erfc)
    /// \function gamma(x)
    /// Return the gamma function of `x`.
    MATH_FUN_1(gamma, tgamma)
    /// \function lgamma(x)
    /// return the natural logarithm of the gamma function of `x`.
    MATH_FUN_1(lgamma, lgamma)
    #endif
    //TODO: factorial, fsum
    
    // Function that takes a variable number of arguments
    
    // log(x[, base])
    STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) {
        mp_float_t x = mp_obj_get_float(args[0]);
        if (x <= (mp_float_t)0.0) {
            math_error();
        }
        mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x);
        if (n_args == 1) {
            return mp_obj_new_float(l);
        } else {
            mp_float_t base = mp_obj_get_float(args[1]);
            if (base <= (mp_float_t)0.0) {
                math_error();
            }
            return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base));
        }
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log);
    
    // Functions that return a tuple
    
    /// \function frexp(x)
    /// Converts a floating-point number to fractional and integral components.
    STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
        int int_exponent = 0;
        mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
        mp_obj_t tuple[2];
        tuple[0] = mp_obj_new_float(significand);
        tuple[1] = mp_obj_new_int(int_exponent);
        return mp_obj_new_tuple(2, tuple);
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);
    
    /// \function modf(x)
    STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) {
        mp_float_t int_part = 0.0;
        mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part);
        mp_obj_t tuple[2];
        tuple[0] = mp_obj_new_float(fractional_part);
        tuple[1] = mp_obj_new_float(int_part);
        return mp_obj_new_tuple(2, tuple);
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);
    
    // Angular conversions
    
    /// \function radians(x)
    STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) {
        return mp_obj_new_float(mp_obj_get_float(x_obj) * M_PI / 180.0);
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);
    
    /// \function degrees(x)
    STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
        return mp_obj_new_float(mp_obj_get_float(x_obj) * 180.0 / M_PI);
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees);
    
    STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = {
        { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) },
        { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
        { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
        { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) },
        { MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) },
        { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) },
        #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
        { MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) },
        #endif
        { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) },
        #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
        { MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) },
        { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) },
        { MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) },
        { MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) },
        { MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) },
        { MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) },
        { MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) },
        { MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) },
        #endif
        { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) },
        { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) },
        { MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) },
        { MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) },
        { MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) },
        { MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) },
        { MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) },
        { MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) },
        { MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) },
        { MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) },
        { MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) },
        { MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) },
        { MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) },
        { MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) },
        { MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) },
        { MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) },
        { MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) },
        { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) },
        { MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) },
        { MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) },
        { MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) },
        #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
        { MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) },
        { MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) },
        { MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) },
        { MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) },
        #endif
    };
    
    STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table);
    
    const mp_obj_module_t mp_module_math = {
        .base = { &mp_type_module },
        .globals = (mp_obj_dict_t*)&mp_module_math_globals,
    };
    
    #endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH