Skip to content
Snippets Groups Projects
Select Git revision
  • 0c124c3123a6c7607375e2df0c49edef577a8b8d
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

modos.c

Blame
  • objtype.c 14.64 KiB
    #include <stdlib.h>
    #include <stdint.h>
    #include <string.h>
    #include <assert.h>
    
    #include "nlr.h"
    #include "misc.h"
    #include "mpconfig.h"
    #include "qstr.h"
    #include "obj.h"
    #include "map.h"
    #include "runtime0.h"
    #include "runtime.h"
    
    /******************************************************************************/
    // class object
    // creating an instance of a class makes one of these objects
    
    typedef struct _mp_obj_class_t {
        mp_obj_base_t base;
        mp_map_t members;
    } mp_obj_class_t;
    
    static mp_obj_t mp_obj_new_class(mp_obj_t class) {
        mp_obj_class_t *o = m_new_obj(mp_obj_class_t);
        o->base.type = class;
        mp_map_init(&o->members, 0);
        return o;
    }
    
    // will return MP_OBJ_NULL if not found
    static mp_obj_t mp_obj_class_lookup(const mp_obj_type_t *type, qstr attr) {
        for (;;) {
            if (type->locals_dict != NULL) {
                // search locals_dict (the dynamically created set of methods/attributes)
    
                assert(MP_OBJ_IS_TYPE(type->locals_dict, &dict_type)); // Micro Python restriction, for now
                mp_map_t *locals_map = mp_obj_dict_get_map(type->locals_dict);
                mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
                if (elem != NULL) {
                    return elem->value;
                }
            } else if (type->methods != NULL) {
                // search methods (the const set of methods)
    
                for (const mp_method_t *meth = type->methods; meth->name != NULL; meth++) {
                    if (strcmp(meth->name, qstr_str(attr)) == 0) {
                        return (mp_obj_t)meth->fun;
                    }
                }
            }
    
            // attribute not found, keep searching base classes
    
            // for a const struct, this entry might be NULL
            if (type->bases_tuple == MP_OBJ_NULL) {
                return NULL;
            }
    
            uint len;
            mp_obj_t *items;
            mp_obj_tuple_get(type->bases_tuple, &len, &items);
            if (len == 0) {
                return NULL;
            }
            for (uint i = 0; i < len - 1; i++) {
                assert(MP_OBJ_IS_TYPE(items[i], &mp_const_type));
                mp_obj_t obj = mp_obj_class_lookup((mp_obj_type_t*)items[i], attr);
                if (obj != MP_OBJ_NULL) {
                    return obj;
                }
            }
    
            // search last base (simple tail recursion elimination)
            assert(MP_OBJ_IS_TYPE(items[len - 1], &mp_const_type));
            type = (mp_obj_type_t*)items[len - 1];
        }
    }
    
    static void class_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
        print(env, "<%s object at %p>", mp_obj_get_type_str(self_in), self_in);
    }
    
    static mp_obj_t class_make_new(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
        assert(MP_OBJ_IS_TYPE(self_in, &mp_const_type));
        mp_obj_type_t *self = self_in;
    
        mp_obj_t o = mp_obj_new_class(self_in);
    
        // look for __init__ function
        mp_obj_t init_fn = mp_obj_class_lookup(self, MP_QSTR___init__);
    
        if (init_fn != MP_OBJ_NULL) {
            // call __init__ function
            mp_obj_t init_ret;
            if (n_args == 0 && n_kw == 0) {
                init_ret = rt_call_function_n_kw(init_fn, 1, 0, (mp_obj_t*)&o);
            } else {
                mp_obj_t *args2 = m_new(mp_obj_t, 1 + n_args + 2 * n_kw);
                args2[0] = o;
                memcpy(args2 + 1, args, (n_args + 2 * n_kw) * sizeof(mp_obj_t));
                init_ret = rt_call_function_n_kw(init_fn, n_args + 1, n_kw, args2);
                m_del(mp_obj_t, args2, 1 + n_args + 2 * n_kw);
            }
            if (init_ret != mp_const_none) {
                nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_TypeError, "__init__() should return None, not '%s'", mp_obj_get_type_str(init_ret)));
            }
    
        } else {
            // TODO
            if (n_args != 0) {
                nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_TypeError, "function takes 0 positional arguments but %d were given", (void*)(machine_int_t)n_args));
            }
        }
    
        return o;
    }
    
    static const qstr unary_op_method_name[] = {
        [RT_UNARY_OP_NOT] = MP_QSTR_, // don't need to implement this
        [RT_UNARY_OP_BOOL] = MP_QSTR___bool__,
        [RT_UNARY_OP_LEN] = MP_QSTR___len__,
        //[RT_UNARY_OP_POSITIVE,
        //[RT_UNARY_OP_NEGATIVE,
        //[RT_UNARY_OP_INVERT,
        [RT_UNARY_OP_NOT] = MP_QSTR_, // not implemented, used to make sure array has full size
    };
    
    static mp_obj_t class_unary_op(int op, mp_obj_t self_in) {
        mp_obj_class_t *self = self_in;
        qstr op_name = unary_op_method_name[op];
        if (op_name == 0) {
            return MP_OBJ_NULL;
        }
        mp_obj_t member = mp_obj_class_lookup(self->base.type, op_name);
        if (member != MP_OBJ_NULL) {
            return rt_call_function_1(member, self_in);
        } else {
            return MP_OBJ_NULL;
        }
    }
    
    static const qstr binary_op_method_name[] = {
        [RT_BINARY_OP_SUBSCR] = MP_QSTR___getitem__,
        /*
        RT_BINARY_OP_OR,
        RT_BINARY_OP_XOR,
        RT_BINARY_OP_AND,
        RT_BINARY_OP_LSHIFT,
        RT_BINARY_OP_RSHIFT,
        */
        [RT_BINARY_OP_ADD] = MP_QSTR___add__,
        [RT_BINARY_OP_SUBTRACT] = MP_QSTR___sub__,
        /*
        RT_BINARY_OP_MULTIPLY,
        RT_BINARY_OP_FLOOR_DIVIDE,
        RT_BINARY_OP_TRUE_DIVIDE,
        RT_BINARY_OP_MODULO,
        RT_BINARY_OP_POWER,
        RT_BINARY_OP_INPLACE_OR,
        RT_BINARY_OP_INPLACE_XOR,
        RT_BINARY_OP_INPLACE_AND,
        RT_BINARY_OP_INPLACE_LSHIFT,
        RT_BINARY_OP_INPLACE_RSHIFT,
        RT_BINARY_OP_INPLACE_ADD,
        RT_BINARY_OP_INPLACE_SUBTRACT,
        RT_BINARY_OP_INPLACE_MULTIPLY,
        RT_BINARY_OP_INPLACE_FLOOR_DIVIDE,
        RT_BINARY_OP_INPLACE_TRUE_DIVIDE,
        RT_BINARY_OP_INPLACE_MODULO,
        RT_BINARY_OP_INPLACE_POWER,
        RT_BINARY_OP_LESS,
        RT_BINARY_OP_MORE,
        RT_BINARY_OP_EQUAL,
        RT_BINARY_OP_LESS_EQUAL,
        RT_BINARY_OP_MORE_EQUAL,
        RT_BINARY_OP_NOT_EQUAL,
        RT_BINARY_OP_IN,
        RT_BINARY_OP_IS,
        */
        [RT_BINARY_OP_EXCEPTION_MATCH] = MP_QSTR_, // not implemented, used to make sure array has full size
    };
    
    static mp_obj_t class_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
        mp_obj_class_t *lhs = lhs_in;
        qstr op_name = binary_op_method_name[op];
        if (op_name == 0) {
            return MP_OBJ_NULL;
        }
        mp_obj_t member = mp_obj_class_lookup(lhs->base.type, op_name);
        if (member != MP_OBJ_NULL) {
            return rt_call_function_2(member, lhs_in, rhs_in);
        } else {
            return MP_OBJ_NULL;
        }
    }
    
    static void class_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
        // logic: look in obj members then class locals (TODO check this against CPython)
        mp_obj_class_t *self = self_in;
        mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
        if (elem != NULL) {
            // object member, always treated as a value
            dest[0] = elem->value;
            return;
        }
        mp_obj_t member = mp_obj_class_lookup(self->base.type, attr);
        if (member != MP_OBJ_NULL) {
            if (mp_obj_is_callable(member)) {
                // class member is callable so build a bound method
                // check if the methods are functions, static or class methods
                // see http://docs.python.org/3.3/howto/descriptor.html
                // TODO check that this is the correct place to have this logic
                if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) {
                    // return just the function
                    dest[0] = ((mp_obj_staticmethod_t*)member)->fun;
                } else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) {
                    // return a bound method, with self being the type of this object
                    dest[0] = ((mp_obj_classmethod_t*)member)->fun;
                    dest[1] = mp_obj_get_type(self_in);
                } else {
                    // return a bound method, with self being this object
                    dest[0] = member;
                    dest[1] = self_in;
                }
                return;
            } else {
                // class member is a value, so just return that value
                dest[0] = member;
                return;
            }
        }
    }
    
    static bool class_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) {
        mp_obj_class_t *self = self_in;
        mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value;
        return true;
    }
    
    bool class_store_item(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) {
        mp_obj_class_t *self = self_in;
        mp_obj_t member = mp_obj_class_lookup(self->base.type, QSTR_FROM_STR_STATIC("__setitem__"));
        if (member != MP_OBJ_NULL) {
            mp_obj_t args[3] = {self_in, index, value};
            rt_call_function_n_kw(member, 3, 0, args);
            return true;
        } else {
            return false;
        }
    }
    
    /******************************************************************************/
    // type object
    //  - the struct is mp_obj_type_t and is defined in obj.h so const types can be made
    //  - there is a constant mp_obj_type_t (called mp_const_type) for the 'type' object
    //  - creating a new class (a new type) creates a new mp_obj_type_t
    
    static void type_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
        mp_obj_type_t *self = self_in;
        print(env, "<class '%s'>", self->name);
    }
    
    static mp_obj_t type_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
        // TODO check n_kw == 0
    
        switch (n_args) {
            case 1:
                return mp_obj_get_type(args[0]);
    
            case 3:
                // args[0] = name
                // args[1] = bases tuple
                // args[2] = locals dict
                return mp_obj_new_type(mp_obj_str_get_str(args[0]), args[1], args[2]);
    
            default:
                nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "type takes 1 or 3 arguments"));
        }
    }
    
    static mp_obj_t type_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
        // instantiate an instance of a class
    
        mp_obj_type_t *self = self_in;
    
        if (self->make_new == NULL) {
            nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_TypeError, "cannot create '%s' instances", self->name));
        }
    
        // make new instance
        mp_obj_t o = self->make_new(self, n_args, n_kw, args);
    
        // return new instance
        return o;
    }
    
    // for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self
    static void type_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
        assert(MP_OBJ_IS_TYPE(self_in, &mp_const_type));
        mp_obj_type_t *self = self_in;
        mp_obj_t member = mp_obj_class_lookup(self, attr);
        if (member != MP_OBJ_NULL) {
            // check if the methods are functions, static or class methods
            // see http://docs.python.org/3.3/howto/descriptor.html
            if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) {
                // return just the function
                dest[0] = ((mp_obj_staticmethod_t*)member)->fun;
            } else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) {
                // return a bound method, with self being this class
                dest[0] = ((mp_obj_classmethod_t*)member)->fun;
                dest[1] = self_in;
            } else {
                // return just the function
                // TODO need to wrap in a type check for the first argument; eg list.append(1,1) needs to throw an exception
                dest[0] = (mp_obj_t)member;
            }
        }
    }
    
    static bool type_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) {
        assert(MP_OBJ_IS_TYPE(self_in, &mp_const_type));
        mp_obj_type_t *self = self_in;
    
        // TODO CPython allows STORE_ATTR to a class, but is this the correct implementation?
    
        if (self->locals_dict != NULL) {
            assert(MP_OBJ_IS_TYPE(self->locals_dict, &dict_type)); // Micro Python restriction, for now
            mp_map_t *locals_map = ((void*)self->locals_dict + sizeof(mp_obj_base_t)); // XXX hack to get map object from dict object
            mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value;
            return true;
        } else {
            return false;
        }
    }
    
    const mp_obj_type_t mp_const_type = {
        { &mp_const_type },
        "type",
        .print = type_print,
        .make_new = type_make_new,
        .call = type_call,
        .load_attr = type_load_attr,
        .store_attr = type_store_attr,
    };
    
    mp_obj_t mp_obj_new_type(const char *name, mp_obj_t bases_tuple, mp_obj_t locals_dict) {
        assert(MP_OBJ_IS_TYPE(bases_tuple, &tuple_type)); // Micro Python restriction, for now
        assert(MP_OBJ_IS_TYPE(locals_dict, &dict_type)); // Micro Python restriction, for now
        mp_obj_type_t *o = m_new0(mp_obj_type_t, 1);
        o->base.type = &mp_const_type;
        o->name = name;
        o->print = class_print;
        o->make_new = class_make_new;
        o->unary_op = class_unary_op;
        o->binary_op = class_binary_op;
        o->load_attr = class_load_attr;
        o->store_attr = class_store_attr;
        o->store_item = class_store_item;
        o->bases_tuple = bases_tuple;
        o->locals_dict = locals_dict;
        return o;
    }
    
    /******************************************************************************/
    // built-ins specific to types
    
    static mp_obj_t mp_builtin_issubclass(mp_obj_t object, mp_obj_t classinfo) {
        if (!MP_OBJ_IS_TYPE(object, &mp_const_type)) {
            nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "issubclass() arg 1 must be a class"));
        }
    
        // TODO support a tuple of classes for second argument
        if (!MP_OBJ_IS_TYPE(classinfo, &mp_const_type)) {
            nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "issubclass() arg 2 must be a class"));
        }
    
        for (;;) {
            if (object == classinfo) {
                return mp_const_true;
            }
    
            // not equivalent classes, keep searching base classes
    
            assert(MP_OBJ_IS_TYPE(object, &mp_const_type));
            mp_obj_type_t *self = object;
    
            // for a const struct, this entry might be NULL
            if (self->bases_tuple == MP_OBJ_NULL) {
                return mp_const_false;
            }
    
            uint len;
            mp_obj_t *items;
            mp_obj_tuple_get(self->bases_tuple, &len, &items);
            if (len == 0) {
                return mp_const_false;
            }
            for (uint i = 0; i < len - 1; i++) {
                if (mp_builtin_issubclass(items[i], classinfo) == mp_const_true) {
                    return mp_const_true;
                }
            }
    
            // search last base (simple tail recursion elimination)
            object = items[len - 1];
        }
    }
    
    MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_issubclass_obj, mp_builtin_issubclass);
    
    static mp_obj_t mp_builtin_isinstance(mp_obj_t object, mp_obj_t classinfo) {
        return mp_builtin_issubclass(mp_obj_get_type(object), classinfo);
    }
    
    MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_isinstance_obj, mp_builtin_isinstance);
    
    /******************************************************************************/
    // staticmethod and classmethod types (probably should go in a different file)
    
    const mp_obj_type_t mp_type_staticmethod = {
        { &mp_const_type },
        "staticmethod",
    };
    
    const mp_obj_type_t mp_type_classmethod = {
        { &mp_const_type },
        "classmethod",
    };