Skip to content
Snippets Groups Projects
Select Git revision
  • 0ebf8534ab56c3958be335f0c4c6f857de41f71d
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

builtin_id.py

Blame
  • stm32f4xx_tim.c 121.84 KiB
    /**
      ******************************************************************************
      * @file    stm32f4xx_tim.c
      * @author  MCD Application Team
      * @version V1.1.0
      * @date    11-January-2013
      * @brief   This file provides firmware functions to manage the following 
      *          functionalities of the TIM peripheral:
      *            + TimeBase management
      *            + Output Compare management
      *            + Input Capture management
      *            + Advanced-control timers (TIM1 and TIM8) specific features  
      *            + Interrupts, DMA and flags management
      *            + Clocks management
      *            + Synchronization management
      *            + Specific interface management
      *            + Specific remapping management      
      *              
      @verbatim   
     ===============================================================================
                       #####  How to use this driver #####
     ===============================================================================
        [..]
        This driver provides functions to configure and program the TIM 
        of all STM32F4xx devices.
        These functions are split in 9 groups: 
         
          (#) TIM TimeBase management: this group includes all needed functions 
              to configure the TM Timebase unit:
            (++) Set/Get Prescaler
            (++) Set/Get Autoreload  
            (++) Counter modes configuration
            (++) Set Clock division  
            (++) Select the One Pulse mode
            (++) Update Request Configuration
            (++) Update Disable Configuration
            (++) Auto-Preload Configuration 
            (++) Enable/Disable the counter     
                       
          (#) TIM Output Compare management: this group includes all needed 
              functions to configure the Capture/Compare unit used in Output 
              compare mode: 
            (++) Configure each channel, independently, in Output Compare mode
            (++) Select the output compare modes
            (++) Select the Polarities of each channel
            (++) Set/Get the Capture/Compare register values
            (++) Select the Output Compare Fast mode 
            (++) Select the Output Compare Forced mode  
            (++) Output Compare-Preload Configuration 
            (++) Clear Output Compare Reference
            (++) Select the OCREF Clear signal
            (++) Enable/Disable the Capture/Compare Channels    
                         
          (#) TIM Input Capture management: this group includes all needed 
              functions to configure the Capture/Compare unit used in 
              Input Capture mode:
            (++) Configure each channel in input capture mode
            (++) Configure Channel1/2 in PWM Input mode
            (++) Set the Input Capture Prescaler
            (++) Get the Capture/Compare values      
                         
          (#) Advanced-control timers (TIM1 and TIM8) specific features
            (++) Configures the Break input, dead time, Lock level, the OSSI,
                 the OSSR State and the AOE(automatic output enable)
            (++) Enable/Disable the TIM peripheral Main Outputs
            (++) Select the Commutation event
            (++) Set/Reset the Capture Compare Preload Control bit
                                    
          (#) TIM interrupts, DMA and flags management
            (++) Enable/Disable interrupt sources
            (++) Get flags status
            (++) Clear flags/ Pending bits
            (++) Enable/Disable DMA requests 
            (++) Configure DMA burst mode
            (++) Select CaptureCompare DMA request  
                    
          (#) TIM clocks management: this group includes all needed functions 
              to configure the clock controller unit:
            (++) Select internal/External clock
            (++) Select the external clock mode: ETR(Mode1/Mode2), TIx or ITRx
               
          (#) TIM synchronization management: this group includes all needed 
              functions to configure the Synchronization unit:
            (++) Select Input Trigger  
            (++) Select Output Trigger  
            (++) Select Master Slave Mode 
            (++) ETR Configuration when used as external trigger   
           
          (#) TIM specific interface management, this group includes all 
              needed functions to use the specific TIM interface:
            (++) Encoder Interface Configuration
            (++) Select Hall Sensor   
               
          (#) TIM specific remapping management includes the Remapping 
              configuration of specific timers               
         
      @endverbatim    
      ******************************************************************************
      * @attention
      *
      * <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
      *
      * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
      * You may not use this file except in compliance with the License.
      * You may obtain a copy of the License at:
      *
      *        http://www.st.com/software_license_agreement_liberty_v2
      *
      * Unless required by applicable law or agreed to in writing, software 
      * distributed under the License is distributed on an "AS IS" BASIS, 
      * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      * See the License for the specific language governing permissions and
      * limitations under the License.
      *
      ******************************************************************************
      */
    
    /* Includes ------------------------------------------------------------------*/
    #include "stm32f4xx_conf.h"
    #include "stm32f4xx_tim.h"
    #include "stm32f4xx_rcc.h"
    
    /** @addtogroup STM32F4xx_StdPeriph_Driver
      * @{
      */
    
    /** @defgroup TIM 
      * @brief TIM driver modules
      * @{
      */
    
    /* Private typedef -----------------------------------------------------------*/
    /* Private define ------------------------------------------------------------*/
    
    /* ---------------------- TIM registers bit mask ------------------------ */
    #define SMCR_ETR_MASK      ((uint16_t)0x00FF) 
    #define CCMR_OFFSET        ((uint16_t)0x0018)
    #define CCER_CCE_SET       ((uint16_t)0x0001)  
    #define	CCER_CCNE_SET      ((uint16_t)0x0004) 
    #define CCMR_OC13M_MASK    ((uint16_t)0xFF8F)
    #define CCMR_OC24M_MASK    ((uint16_t)0x8FFF) 
    
    /* Private macro -------------------------------------------------------------*/
    /* Private variables ---------------------------------------------------------*/
    /* Private function prototypes -----------------------------------------------*/
    static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                           uint16_t TIM_ICFilter);
    static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                           uint16_t TIM_ICFilter);
    static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                           uint16_t TIM_ICFilter);
    static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                           uint16_t TIM_ICFilter);
    
    /* Private functions ---------------------------------------------------------*/
    
    /** @defgroup TIM_Private_Functions
      * @{
      */
    
    /** @defgroup TIM_Group1 TimeBase management functions
     *  @brief   TimeBase management functions 
     *
    @verbatim   
     ===============================================================================
                         ##### TimeBase management functions #####
     ===============================================================================  
      
         
                ##### TIM Driver: how to use it in Timing(Time base) Mode #####
     ===============================================================================
        [..] 
        To use the Timer in Timing(Time base) mode, the following steps are mandatory:
           
          (#) Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) function
                        
          (#) Fill the TIM_TimeBaseInitStruct with the desired parameters.
           
          (#) Call TIM_TimeBaseInit(TIMx, &TIM_TimeBaseInitStruct) to configure the Time Base unit
              with the corresponding configuration
              
          (#) Enable the NVIC if you need to generate the update interrupt. 
              
          (#) Enable the corresponding interrupt using the function TIM_ITConfig(TIMx, TIM_IT_Update) 
           
          (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
                 
           -@- All other functions can be used separately to modify, if needed,
               a specific feature of the Timer. 
    
    @endverbatim
      * @{
      */
      
    /**
      * @brief  Deinitializes the TIMx peripheral registers to their default reset values.
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @retval None
    
      */
    void TIM_DeInit(TIM_TypeDef* TIMx)
    {
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
     
      if (TIMx == TIM1)
      {
        RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, ENABLE);
        RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, DISABLE);  
      } 
      else if (TIMx == TIM2) 
      {     
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, ENABLE);
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, DISABLE);
      }  
      else if (TIMx == TIM3)
      { 
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, ENABLE);
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, DISABLE);
      }  
      else if (TIMx == TIM4)
      { 
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, ENABLE);
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, DISABLE);
      }  
      else if (TIMx == TIM5)
      {      
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, ENABLE);
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, DISABLE);
      }  
      else if (TIMx == TIM6)  
      {    
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, ENABLE);
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, DISABLE);
      }  
      else if (TIMx == TIM7)
      {      
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, ENABLE);
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, DISABLE);
      }  
      else if (TIMx == TIM8)
      {      
        RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, ENABLE);
        RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, DISABLE);  
      }  
      else if (TIMx == TIM9)
      {      
        RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, ENABLE);
        RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, DISABLE);  
       }  
      else if (TIMx == TIM10)
      {      
        RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, ENABLE);
        RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, DISABLE);  
      }  
      else if (TIMx == TIM11) 
      {     
        RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, ENABLE);
        RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, DISABLE);  
      }  
      else if (TIMx == TIM12)
      {      
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, ENABLE);
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, DISABLE);  
      }  
      else if (TIMx == TIM13) 
      {       
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, ENABLE);
        RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, DISABLE);  
      }  
      else
      { 
        if (TIMx == TIM14) 
        {     
          RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, ENABLE);
          RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, DISABLE); 
        }   
      }
    }
    
    /**
      * @brief  Initializes the TIMx Time Base Unit peripheral according to 
      *         the specified parameters in the TIM_TimeBaseInitStruct.
      * @param  TIMx: where x can be  1 to 14 to select the TIM peripheral.
      * @param  TIM_TimeBaseInitStruct: pointer to a TIM_TimeBaseInitTypeDef structure
      *         that contains the configuration information for the specified TIM peripheral.
      * @retval None
      */
    void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
    {
      uint16_t tmpcr1 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
      assert_param(IS_TIM_COUNTER_MODE(TIM_TimeBaseInitStruct->TIM_CounterMode));
      assert_param(IS_TIM_CKD_DIV(TIM_TimeBaseInitStruct->TIM_ClockDivision));
    
      tmpcr1 = TIMx->CR1;  
    
      if((TIMx == TIM1) || (TIMx == TIM8)||
         (TIMx == TIM2) || (TIMx == TIM3)||
         (TIMx == TIM4) || (TIMx == TIM5)) 
      {
        /* Select the Counter Mode */
        tmpcr1 &= (uint16_t)(~(TIM_CR1_DIR | TIM_CR1_CMS));
        tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_CounterMode;
      }
     
      if((TIMx != TIM6) && (TIMx != TIM7))
      {
        /* Set the clock division */
        tmpcr1 &=  (uint16_t)(~TIM_CR1_CKD);
        tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_ClockDivision;
      }
    
      TIMx->CR1 = tmpcr1;
    
      /* Set the Autoreload value */
      TIMx->ARR = TIM_TimeBaseInitStruct->TIM_Period ;
     
      /* Set the Prescaler value */
      TIMx->PSC = TIM_TimeBaseInitStruct->TIM_Prescaler;
        
      if ((TIMx == TIM1) || (TIMx == TIM8))  
      {
        /* Set the Repetition Counter value */
        TIMx->RCR = TIM_TimeBaseInitStruct->TIM_RepetitionCounter;
      }
    
      /* Generate an update event to reload the Prescaler 
         and the repetition counter(only for TIM1 and TIM8) value immediatly */
      TIMx->EGR = TIM_PSCReloadMode_Immediate;          
    }
    
    /**
      * @brief  Fills each TIM_TimeBaseInitStruct member with its default value.
      * @param  TIM_TimeBaseInitStruct : pointer to a TIM_TimeBaseInitTypeDef
      *         structure which will be initialized.
      * @retval None
      */
    void TIM_TimeBaseStructInit(TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
    {
      /* Set the default configuration */
      TIM_TimeBaseInitStruct->TIM_Period = 0xFFFFFFFF;
      TIM_TimeBaseInitStruct->TIM_Prescaler = 0x0000;
      TIM_TimeBaseInitStruct->TIM_ClockDivision = TIM_CKD_DIV1;
      TIM_TimeBaseInitStruct->TIM_CounterMode = TIM_CounterMode_Up;
      TIM_TimeBaseInitStruct->TIM_RepetitionCounter = 0x0000;
    }
    
    /**
      * @brief  Configures the TIMx Prescaler.
      * @param  TIMx: where x can be  1 to 14 to select the TIM peripheral.
      * @param  Prescaler: specifies the Prescaler Register value
      * @param  TIM_PSCReloadMode: specifies the TIM Prescaler Reload mode
      *          This parameter can be one of the following values:
      *            @arg TIM_PSCReloadMode_Update: The Prescaler is loaded at the update event.
      *            @arg TIM_PSCReloadMode_Immediate: The Prescaler is loaded immediatly.
      * @retval None
      */
    void TIM_PrescalerConfig(TIM_TypeDef* TIMx, uint16_t Prescaler, uint16_t TIM_PSCReloadMode)
    {
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
      assert_param(IS_TIM_PRESCALER_RELOAD(TIM_PSCReloadMode));
      /* Set the Prescaler value */
      TIMx->PSC = Prescaler;
      /* Set or reset the UG Bit */
      TIMx->EGR = TIM_PSCReloadMode;
    }
    
    /**
      * @brief  Specifies the TIMx Counter Mode to be used.
      * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_CounterMode: specifies the Counter Mode to be used
      *          This parameter can be one of the following values:
      *            @arg TIM_CounterMode_Up: TIM Up Counting Mode
      *            @arg TIM_CounterMode_Down: TIM Down Counting Mode
      *            @arg TIM_CounterMode_CenterAligned1: TIM Center Aligned Mode1
      *            @arg TIM_CounterMode_CenterAligned2: TIM Center Aligned Mode2
      *            @arg TIM_CounterMode_CenterAligned3: TIM Center Aligned Mode3
      * @retval None
      */
    void TIM_CounterModeConfig(TIM_TypeDef* TIMx, uint16_t TIM_CounterMode)
    {
      uint16_t tmpcr1 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_COUNTER_MODE(TIM_CounterMode));
    
      tmpcr1 = TIMx->CR1;
    
      /* Reset the CMS and DIR Bits */
      tmpcr1 &= (uint16_t)~(TIM_CR1_DIR | TIM_CR1_CMS);
    
      /* Set the Counter Mode */
      tmpcr1 |= TIM_CounterMode;
    
      /* Write to TIMx CR1 register */
      TIMx->CR1 = tmpcr1;
    }
    
    /**
      * @brief  Sets the TIMx Counter Register value
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @param  Counter: specifies the Counter register new value.
      * @retval None
      */
    void TIM_SetCounter(TIM_TypeDef* TIMx, uint32_t Counter)
    {
      /* Check the parameters */
       assert_param(IS_TIM_ALL_PERIPH(TIMx));
    
      /* Set the Counter Register value */
      TIMx->CNT = Counter;
    }
    
    /**
      * @brief  Sets the TIMx Autoreload Register value
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @param  Autoreload: specifies the Autoreload register new value.
      * @retval None
      */
    void TIM_SetAutoreload(TIM_TypeDef* TIMx, uint32_t Autoreload)
    {
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
      
      /* Set the Autoreload Register value */
      TIMx->ARR = Autoreload;
    }
    
    /**
      * @brief  Gets the TIMx Counter value.
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @retval Counter Register value
      */
    uint32_t TIM_GetCounter(TIM_TypeDef* TIMx)
    {
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
    
      /* Get the Counter Register value */
      return TIMx->CNT;
    }
    
    /**
      * @brief  Gets the TIMx Prescaler value.
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @retval Prescaler Register value.
      */
    uint16_t TIM_GetPrescaler(TIM_TypeDef* TIMx)
    {
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
    
      /* Get the Prescaler Register value */
      return TIMx->PSC;
    }
    
    /**
      * @brief  Enables or Disables the TIMx Update event.
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @param  NewState: new state of the TIMx UDIS bit
      *          This parameter can be: ENABLE or DISABLE.
      * @retval None
      */
    void TIM_UpdateDisableConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
    {
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
      assert_param(IS_FUNCTIONAL_STATE(NewState));
    
      if (NewState != DISABLE)
      {
        /* Set the Update Disable Bit */
        TIMx->CR1 |= TIM_CR1_UDIS;
      }
      else
      {
        /* Reset the Update Disable Bit */
        TIMx->CR1 &= (uint16_t)~TIM_CR1_UDIS;
      }
    }
    
    /**
      * @brief  Configures the TIMx Update Request Interrupt source.
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @param  TIM_UpdateSource: specifies the Update source.
      *          This parameter can be one of the following values:
      *            @arg TIM_UpdateSource_Global: Source of update is the counter
      *                 overflow/underflow or the setting of UG bit, or an update
      *                 generation through the slave mode controller.
      *            @arg TIM_UpdateSource_Regular: Source of update is counter overflow/underflow.
      * @retval None
      */
    void TIM_UpdateRequestConfig(TIM_TypeDef* TIMx, uint16_t TIM_UpdateSource)
    {
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
      assert_param(IS_TIM_UPDATE_SOURCE(TIM_UpdateSource));
    
      if (TIM_UpdateSource != TIM_UpdateSource_Global)
      {
        /* Set the URS Bit */
        TIMx->CR1 |= TIM_CR1_URS;
      }
      else
      {
        /* Reset the URS Bit */
        TIMx->CR1 &= (uint16_t)~TIM_CR1_URS;
      }
    }
    
    /**
      * @brief  Enables or disables TIMx peripheral Preload register on ARR.
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @param  NewState: new state of the TIMx peripheral Preload register
      *          This parameter can be: ENABLE or DISABLE.
      * @retval None
      */
    void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
    {
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
      assert_param(IS_FUNCTIONAL_STATE(NewState));
    
      if (NewState != DISABLE)
      {
        /* Set the ARR Preload Bit */
        TIMx->CR1 |= TIM_CR1_ARPE;
      }
      else
      {
        /* Reset the ARR Preload Bit */
        TIMx->CR1 &= (uint16_t)~TIM_CR1_ARPE;
      }
    }
    
    /**
      * @brief  Selects the TIMx's One Pulse Mode.
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @param  TIM_OPMode: specifies the OPM Mode to be used.
      *          This parameter can be one of the following values:
      *            @arg TIM_OPMode_Single
      *            @arg TIM_OPMode_Repetitive
      * @retval None
      */
    void TIM_SelectOnePulseMode(TIM_TypeDef* TIMx, uint16_t TIM_OPMode)
    {
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
      assert_param(IS_TIM_OPM_MODE(TIM_OPMode));
    
      /* Reset the OPM Bit */
      TIMx->CR1 &= (uint16_t)~TIM_CR1_OPM;
    
      /* Configure the OPM Mode */
      TIMx->CR1 |= TIM_OPMode;
    }
    
    /**
      * @brief  Sets the TIMx Clock Division value.
      * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
      * @param  TIM_CKD: specifies the clock division value.
      *          This parameter can be one of the following value:
      *            @arg TIM_CKD_DIV1: TDTS = Tck_tim
      *            @arg TIM_CKD_DIV2: TDTS = 2*Tck_tim
      *            @arg TIM_CKD_DIV4: TDTS = 4*Tck_tim
      * @retval None
      */
    void TIM_SetClockDivision(TIM_TypeDef* TIMx, uint16_t TIM_CKD)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx));
      assert_param(IS_TIM_CKD_DIV(TIM_CKD));
    
      /* Reset the CKD Bits */
      TIMx->CR1 &= (uint16_t)(~TIM_CR1_CKD);
    
      /* Set the CKD value */
      TIMx->CR1 |= TIM_CKD;
    }
    
    /**
      * @brief  Enables or disables the specified TIM peripheral.
      * @param  TIMx: where x can be 1 to 14 to select the TIMx peripheral.
      * @param  NewState: new state of the TIMx peripheral.
      *          This parameter can be: ENABLE or DISABLE.
      * @retval None
      */
    void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState)
    {
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
      assert_param(IS_FUNCTIONAL_STATE(NewState));
      
      if (NewState != DISABLE)
      {
        /* Enable the TIM Counter */
        TIMx->CR1 |= TIM_CR1_CEN;
      }
      else
      {
        /* Disable the TIM Counter */
        TIMx->CR1 &= (uint16_t)~TIM_CR1_CEN;
      }
    }
    /**
      * @}
      */
    
    /** @defgroup TIM_Group2 Output Compare management functions
     *  @brief    Output Compare management functions 
     *
    @verbatim   
     ===============================================================================
                  ##### Output Compare management functions #####
     ===============================================================================  
       
          
            ##### TIM Driver: how to use it in Output Compare Mode #####
     ===============================================================================
        [..] 
        To use the Timer in Output Compare mode, the following steps are mandatory:
           
          (#) Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) 
              function
           
          (#) Configure the TIM pins by configuring the corresponding GPIO pins
           
          (#) Configure the Time base unit as described in the first part of this driver, 
            (++) if needed, else the Timer will run with the default configuration:
                Autoreload value = 0xFFFF
            (++) Prescaler value = 0x0000
            (++) Counter mode = Up counting
            (++) Clock Division = TIM_CKD_DIV1
              
          (#) Fill the TIM_OCInitStruct with the desired parameters including:
            (++) The TIM Output Compare mode: TIM_OCMode
            (++) TIM Output State: TIM_OutputState
            (++) TIM Pulse value: TIM_Pulse
            (++) TIM Output Compare Polarity : TIM_OCPolarity
           
          (#) Call TIM_OCxInit(TIMx, &TIM_OCInitStruct) to configure the desired 
              channel with the corresponding configuration
           
          (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
           
          -@- All other functions can be used separately to modify, if needed,
              a specific feature of the Timer. 
              
          -@- In case of PWM mode, this function is mandatory:
              TIM_OCxPreloadConfig(TIMx, TIM_OCPreload_ENABLE); 
                  
          -@- If the corresponding interrupt or DMA request are needed, the user should:
            (+@) Enable the NVIC (or the DMA) to use the TIM interrupts (or DMA requests). 
            (+@) Enable the corresponding interrupt (or DMA request) using the function 
                 TIM_ITConfig(TIMx, TIM_IT_CCx) (or TIM_DMA_Cmd(TIMx, TIM_DMA_CCx))   
    
    @endverbatim
      * @{
      */
    
    /**
      * @brief  Initializes the TIMx Channel1 according to the specified parameters in
      *         the TIM_OCInitStruct.
      * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
      * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
      *         the configuration information for the specified TIM peripheral.
      * @retval None
      */
    void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
    {
      uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
       
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx)); 
      assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
      assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
      assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
    
      /* Disable the Channel 1: Reset the CC1E Bit */
      TIMx->CCER &= (uint16_t)~TIM_CCER_CC1E;
      
      /* Get the TIMx CCER register value */
      tmpccer = TIMx->CCER;
      /* Get the TIMx CR2 register value */
      tmpcr2 =  TIMx->CR2;
      
      /* Get the TIMx CCMR1 register value */
      tmpccmrx = TIMx->CCMR1;
        
      /* Reset the Output Compare Mode Bits */
      tmpccmrx &= (uint16_t)~TIM_CCMR1_OC1M;
      tmpccmrx &= (uint16_t)~TIM_CCMR1_CC1S;
      /* Select the Output Compare Mode */
      tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
      
      /* Reset the Output Polarity level */
      tmpccer &= (uint16_t)~TIM_CCER_CC1P;
      /* Set the Output Compare Polarity */
      tmpccer |= TIM_OCInitStruct->TIM_OCPolarity;
      
      /* Set the Output State */
      tmpccer |= TIM_OCInitStruct->TIM_OutputState;
        
      if((TIMx == TIM1) || (TIMx == TIM8))
      {
        assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
        assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
        assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
        assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
        
        /* Reset the Output N Polarity level */
        tmpccer &= (uint16_t)~TIM_CCER_CC1NP;
        /* Set the Output N Polarity */
        tmpccer |= TIM_OCInitStruct->TIM_OCNPolarity;
        /* Reset the Output N State */
        tmpccer &= (uint16_t)~TIM_CCER_CC1NE;
        
        /* Set the Output N State */
        tmpccer |= TIM_OCInitStruct->TIM_OutputNState;
        /* Reset the Output Compare and Output Compare N IDLE State */
        tmpcr2 &= (uint16_t)~TIM_CR2_OIS1;
        tmpcr2 &= (uint16_t)~TIM_CR2_OIS1N;
        /* Set the Output Idle state */
        tmpcr2 |= TIM_OCInitStruct->TIM_OCIdleState;
        /* Set the Output N Idle state */
        tmpcr2 |= TIM_OCInitStruct->TIM_OCNIdleState;
      }
      /* Write to TIMx CR2 */
      TIMx->CR2 = tmpcr2;
      
      /* Write to TIMx CCMR1 */
      TIMx->CCMR1 = tmpccmrx;
      
      /* Set the Capture Compare Register value */
      TIMx->CCR1 = TIM_OCInitStruct->TIM_Pulse;
      
      /* Write to TIMx CCER */
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Initializes the TIMx Channel2 according to the specified parameters 
      *         in the TIM_OCInitStruct.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
      *         the configuration information for the specified TIM peripheral.
      * @retval None
      */
    void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
    {
      uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
       
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx)); 
      assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
      assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
      assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
    
      /* Disable the Channel 2: Reset the CC2E Bit */
      TIMx->CCER &= (uint16_t)~TIM_CCER_CC2E;
      
      /* Get the TIMx CCER register value */  
      tmpccer = TIMx->CCER;
      /* Get the TIMx CR2 register value */
      tmpcr2 =  TIMx->CR2;
      
      /* Get the TIMx CCMR1 register value */
      tmpccmrx = TIMx->CCMR1;
        
      /* Reset the Output Compare mode and Capture/Compare selection Bits */
      tmpccmrx &= (uint16_t)~TIM_CCMR1_OC2M;
      tmpccmrx &= (uint16_t)~TIM_CCMR1_CC2S;
      
      /* Select the Output Compare Mode */
      tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
      
      /* Reset the Output Polarity level */
      tmpccer &= (uint16_t)~TIM_CCER_CC2P;
      /* Set the Output Compare Polarity */
      tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 4);
      
      /* Set the Output State */
      tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 4);
        
      if((TIMx == TIM1) || (TIMx == TIM8))
      {
        assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
        assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
        assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
        assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
        
        /* Reset the Output N Polarity level */
        tmpccer &= (uint16_t)~TIM_CCER_CC2NP;
        /* Set the Output N Polarity */
        tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCNPolarity << 4);
        /* Reset the Output N State */
        tmpccer &= (uint16_t)~TIM_CCER_CC2NE;
        
        /* Set the Output N State */
        tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputNState << 4);
        /* Reset the Output Compare and Output Compare N IDLE State */
        tmpcr2 &= (uint16_t)~TIM_CR2_OIS2;
        tmpcr2 &= (uint16_t)~TIM_CR2_OIS2N;
        /* Set the Output Idle state */
        tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 2);
        /* Set the Output N Idle state */
        tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCNIdleState << 2);
      }
      /* Write to TIMx CR2 */
      TIMx->CR2 = tmpcr2;
      
      /* Write to TIMx CCMR1 */
      TIMx->CCMR1 = tmpccmrx;
      
      /* Set the Capture Compare Register value */
      TIMx->CCR2 = TIM_OCInitStruct->TIM_Pulse;
      
      /* Write to TIMx CCER */
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Initializes the TIMx Channel3 according to the specified parameters
      *         in the TIM_OCInitStruct.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
      *         the configuration information for the specified TIM peripheral.
      * @retval None
      */
    void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
    {
      uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
       
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 
      assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
      assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
      assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
    
      /* Disable the Channel 3: Reset the CC2E Bit */
      TIMx->CCER &= (uint16_t)~TIM_CCER_CC3E;
      
      /* Get the TIMx CCER register value */
      tmpccer = TIMx->CCER;
      /* Get the TIMx CR2 register value */
      tmpcr2 =  TIMx->CR2;
      
      /* Get the TIMx CCMR2 register value */
      tmpccmrx = TIMx->CCMR2;
        
      /* Reset the Output Compare mode and Capture/Compare selection Bits */
      tmpccmrx &= (uint16_t)~TIM_CCMR2_OC3M;
      tmpccmrx &= (uint16_t)~TIM_CCMR2_CC3S;  
      /* Select the Output Compare Mode */
      tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
      
      /* Reset the Output Polarity level */
      tmpccer &= (uint16_t)~TIM_CCER_CC3P;
      /* Set the Output Compare Polarity */
      tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 8);
      
      /* Set the Output State */
      tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 8);
        
      if((TIMx == TIM1) || (TIMx == TIM8))
      {
        assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
        assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
        assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
        assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
        
        /* Reset the Output N Polarity level */
        tmpccer &= (uint16_t)~TIM_CCER_CC3NP;
        /* Set the Output N Polarity */
        tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCNPolarity << 8);
        /* Reset the Output N State */
        tmpccer &= (uint16_t)~TIM_CCER_CC3NE;
        
        /* Set the Output N State */
        tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputNState << 8);
        /* Reset the Output Compare and Output Compare N IDLE State */
        tmpcr2 &= (uint16_t)~TIM_CR2_OIS3;
        tmpcr2 &= (uint16_t)~TIM_CR2_OIS3N;
        /* Set the Output Idle state */
        tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 4);
        /* Set the Output N Idle state */
        tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCNIdleState << 4);
      }
      /* Write to TIMx CR2 */
      TIMx->CR2 = tmpcr2;
      
      /* Write to TIMx CCMR2 */
      TIMx->CCMR2 = tmpccmrx;
      
      /* Set the Capture Compare Register value */
      TIMx->CCR3 = TIM_OCInitStruct->TIM_Pulse;
      
      /* Write to TIMx CCER */
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Initializes the TIMx Channel4 according to the specified parameters
      *         in the TIM_OCInitStruct.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
      *         the configuration information for the specified TIM peripheral.
      * @retval None
      */
    void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
    {
      uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
       
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 
      assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
      assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
      assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
    
      /* Disable the Channel 4: Reset the CC4E Bit */
      TIMx->CCER &= (uint16_t)~TIM_CCER_CC4E;
      
      /* Get the TIMx CCER register value */
      tmpccer = TIMx->CCER;
      /* Get the TIMx CR2 register value */
      tmpcr2 =  TIMx->CR2;
      
      /* Get the TIMx CCMR2 register value */
      tmpccmrx = TIMx->CCMR2;
        
      /* Reset the Output Compare mode and Capture/Compare selection Bits */
      tmpccmrx &= (uint16_t)~TIM_CCMR2_OC4M;
      tmpccmrx &= (uint16_t)~TIM_CCMR2_CC4S;
      
      /* Select the Output Compare Mode */
      tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
      
      /* Reset the Output Polarity level */
      tmpccer &= (uint16_t)~TIM_CCER_CC4P;
      /* Set the Output Compare Polarity */
      tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 12);
      
      /* Set the Output State */
      tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 12);
      
      if((TIMx == TIM1) || (TIMx == TIM8))
      {
        assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
        /* Reset the Output Compare IDLE State */
        tmpcr2 &=(uint16_t) ~TIM_CR2_OIS4;
        /* Set the Output Idle state */
        tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 6);
      }
      /* Write to TIMx CR2 */
      TIMx->CR2 = tmpcr2;
      
      /* Write to TIMx CCMR2 */  
      TIMx->CCMR2 = tmpccmrx;
        
      /* Set the Capture Compare Register value */
      TIMx->CCR4 = TIM_OCInitStruct->TIM_Pulse;
      
      /* Write to TIMx CCER */
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Fills each TIM_OCInitStruct member with its default value.
      * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure which will
      *         be initialized.
      * @retval None
      */
    void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct)
    {
      /* Set the default configuration */
      TIM_OCInitStruct->TIM_OCMode = TIM_OCMode_Timing;
      TIM_OCInitStruct->TIM_OutputState = TIM_OutputState_Disable;
      TIM_OCInitStruct->TIM_OutputNState = TIM_OutputNState_Disable;
      TIM_OCInitStruct->TIM_Pulse = 0x00000000;
      TIM_OCInitStruct->TIM_OCPolarity = TIM_OCPolarity_High;
      TIM_OCInitStruct->TIM_OCNPolarity = TIM_OCPolarity_High;
      TIM_OCInitStruct->TIM_OCIdleState = TIM_OCIdleState_Reset;
      TIM_OCInitStruct->TIM_OCNIdleState = TIM_OCNIdleState_Reset;
    }
    
    /**
      * @brief  Selects the TIM Output Compare Mode.
      * @note   This function disables the selected channel before changing the Output
      *         Compare Mode. If needed, user has to enable this channel using
      *         TIM_CCxCmd() and TIM_CCxNCmd() functions.
      * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
      * @param  TIM_Channel: specifies the TIM Channel
      *          This parameter can be one of the following values:
      *            @arg TIM_Channel_1: TIM Channel 1
      *            @arg TIM_Channel_2: TIM Channel 2
      *            @arg TIM_Channel_3: TIM Channel 3
      *            @arg TIM_Channel_4: TIM Channel 4
      * @param  TIM_OCMode: specifies the TIM Output Compare Mode.
      *           This parameter can be one of the following values:
      *            @arg TIM_OCMode_Timing
      *            @arg TIM_OCMode_Active
      *            @arg TIM_OCMode_Toggle
      *            @arg TIM_OCMode_PWM1
      *            @arg TIM_OCMode_PWM2
      *            @arg TIM_ForcedAction_Active
      *            @arg TIM_ForcedAction_InActive
      * @retval None
      */
    void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode)
    {
      uint32_t tmp = 0;
      uint16_t tmp1 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx));
      assert_param(IS_TIM_CHANNEL(TIM_Channel));
      assert_param(IS_TIM_OCM(TIM_OCMode));
    
      tmp = (uint32_t) TIMx;
      tmp += CCMR_OFFSET;
    
      tmp1 = CCER_CCE_SET << (uint16_t)TIM_Channel;
    
      /* Disable the Channel: Reset the CCxE Bit */
      TIMx->CCER &= (uint16_t) ~tmp1;
    
      if((TIM_Channel == TIM_Channel_1) ||(TIM_Channel == TIM_Channel_3))
      {
        tmp += (TIM_Channel>>1);
    
        /* Reset the OCxM bits in the CCMRx register */
        *(__IO uint32_t *) tmp &= CCMR_OC13M_MASK;
       
        /* Configure the OCxM bits in the CCMRx register */
        *(__IO uint32_t *) tmp |= TIM_OCMode;
      }
      else
      {
        tmp += (uint16_t)(TIM_Channel - (uint16_t)4)>> (uint16_t)1;
    
        /* Reset the OCxM bits in the CCMRx register */
        *(__IO uint32_t *) tmp &= CCMR_OC24M_MASK;
        
        /* Configure the OCxM bits in the CCMRx register */
        *(__IO uint32_t *) tmp |= (uint16_t)(TIM_OCMode << 8);
      }
    }
    
    /**
      * @brief  Sets the TIMx Capture Compare1 Register value
      * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
      * @param  Compare1: specifies the Capture Compare1 register new value.
      * @retval None
      */
    void TIM_SetCompare1(TIM_TypeDef* TIMx, uint32_t Compare1)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx));
    
      /* Set the Capture Compare1 Register value */
      TIMx->CCR1 = Compare1;
    }
    
    /**
      * @brief  Sets the TIMx Capture Compare2 Register value
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @param  Compare2: specifies the Capture Compare2 register new value.
      * @retval None
      */
    void TIM_SetCompare2(TIM_TypeDef* TIMx, uint32_t Compare2)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
    
      /* Set the Capture Compare2 Register value */
      TIMx->CCR2 = Compare2;
    }
    
    /**
      * @brief  Sets the TIMx Capture Compare3 Register value
      * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  Compare3: specifies the Capture Compare3 register new value.
      * @retval None
      */
    void TIM_SetCompare3(TIM_TypeDef* TIMx, uint32_t Compare3)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
    
      /* Set the Capture Compare3 Register value */
      TIMx->CCR3 = Compare3;
    }
    
    /**
      * @brief  Sets the TIMx Capture Compare4 Register value
      * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  Compare4: specifies the Capture Compare4 register new value.
      * @retval None
      */
    void TIM_SetCompare4(TIM_TypeDef* TIMx, uint32_t Compare4)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
    
      /* Set the Capture Compare4 Register value */
      TIMx->CCR4 = Compare4;
    }
    
    /**
      * @brief  Forces the TIMx output 1 waveform to active or inactive level.
      * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
      * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
      *          This parameter can be one of the following values:
      *            @arg TIM_ForcedAction_Active: Force active level on OC1REF
      *            @arg TIM_ForcedAction_InActive: Force inactive level on OC1REF.
      * @retval None
      */
    void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
    {
      uint16_t tmpccmr1 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx));
      assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
      tmpccmr1 = TIMx->CCMR1;
    
      /* Reset the OC1M Bits */
      tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC1M;
    
      /* Configure The Forced output Mode */
      tmpccmr1 |= TIM_ForcedAction;
    
      /* Write to TIMx CCMR1 register */
      TIMx->CCMR1 = tmpccmr1;
    }
    
    /**
      * @brief  Forces the TIMx output 2 waveform to active or inactive level.
      * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
      *          This parameter can be one of the following values:
      *            @arg TIM_ForcedAction_Active: Force active level on OC2REF
      *            @arg TIM_ForcedAction_InActive: Force inactive level on OC2REF.
      * @retval None
      */
    void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
    {
      uint16_t tmpccmr1 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
      assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
      tmpccmr1 = TIMx->CCMR1;
    
      /* Reset the OC2M Bits */
      tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC2M;
    
      /* Configure The Forced output Mode */
      tmpccmr1 |= (uint16_t)(TIM_ForcedAction << 8);
    
      /* Write to TIMx CCMR1 register */
      TIMx->CCMR1 = tmpccmr1;
    }
    
    /**
      * @brief  Forces the TIMx output 3 waveform to active or inactive level.
      * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
      *          This parameter can be one of the following values:
      *            @arg TIM_ForcedAction_Active: Force active level on OC3REF
      *            @arg TIM_ForcedAction_InActive: Force inactive level on OC3REF.
      * @retval None
      */
    void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
    {
      uint16_t tmpccmr2 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
    
      tmpccmr2 = TIMx->CCMR2;
    
      /* Reset the OC1M Bits */
      tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC3M;
    
      /* Configure The Forced output Mode */
      tmpccmr2 |= TIM_ForcedAction;
    
      /* Write to TIMx CCMR2 register */
      TIMx->CCMR2 = tmpccmr2;
    }
    
    /**
      * @brief  Forces the TIMx output 4 waveform to active or inactive level.
      * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
      *          This parameter can be one of the following values:
      *            @arg TIM_ForcedAction_Active: Force active level on OC4REF
      *            @arg TIM_ForcedAction_InActive: Force inactive level on OC4REF.
      * @retval None
      */
    void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
    {
      uint16_t tmpccmr2 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
      tmpccmr2 = TIMx->CCMR2;
    
      /* Reset the OC2M Bits */
      tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC4M;
    
      /* Configure The Forced output Mode */
      tmpccmr2 |= (uint16_t)(TIM_ForcedAction << 8);
    
      /* Write to TIMx CCMR2 register */
      TIMx->CCMR2 = tmpccmr2;
    }
    
    /**
      * @brief  Enables or disables the TIMx peripheral Preload register on CCR1.
      * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
      * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
      *          This parameter can be one of the following values:
      *            @arg TIM_OCPreload_Enable
      *            @arg TIM_OCPreload_Disable
      * @retval None
      */
    void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
    {
      uint16_t tmpccmr1 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx));
      assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
    
      tmpccmr1 = TIMx->CCMR1;
    
      /* Reset the OC1PE Bit */
      tmpccmr1 &= (uint16_t)(~TIM_CCMR1_OC1PE);
    
      /* Enable or Disable the Output Compare Preload feature */
      tmpccmr1 |= TIM_OCPreload;
    
      /* Write to TIMx CCMR1 register */
      TIMx->CCMR1 = tmpccmr1;
    }
    
    /**
      * @brief  Enables or disables the TIMx peripheral Preload register on CCR2.
      * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
      *          This parameter can be one of the following values:
      *            @arg TIM_OCPreload_Enable
      *            @arg TIM_OCPreload_Disable
      * @retval None
      */
    void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
    {
      uint16_t tmpccmr1 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
      assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
    
      tmpccmr1 = TIMx->CCMR1;
    
      /* Reset the OC2PE Bit */
      tmpccmr1 &= (uint16_t)(~TIM_CCMR1_OC2PE);
    
      /* Enable or Disable the Output Compare Preload feature */
      tmpccmr1 |= (uint16_t)(TIM_OCPreload << 8);
    
      /* Write to TIMx CCMR1 register */
      TIMx->CCMR1 = tmpccmr1;
    }
    
    /**
      * @brief  Enables or disables the TIMx peripheral Preload register on CCR3.
      * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
      *          This parameter can be one of the following values:
      *            @arg TIM_OCPreload_Enable
      *            @arg TIM_OCPreload_Disable
      * @retval None
      */
    void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
    {
      uint16_t tmpccmr2 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
    
      tmpccmr2 = TIMx->CCMR2;
    
      /* Reset the OC3PE Bit */
      tmpccmr2 &= (uint16_t)(~TIM_CCMR2_OC3PE);
    
      /* Enable or Disable the Output Compare Preload feature */
      tmpccmr2 |= TIM_OCPreload;
    
      /* Write to TIMx CCMR2 register */
      TIMx->CCMR2 = tmpccmr2;
    }
    
    /**
      * @brief  Enables or disables the TIMx peripheral Preload register on CCR4.
      * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
      *          This parameter can be one of the following values:
      *            @arg TIM_OCPreload_Enable
      *            @arg TIM_OCPreload_Disable
      * @retval None
      */
    void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
    {
      uint16_t tmpccmr2 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
    
      tmpccmr2 = TIMx->CCMR2;
    
      /* Reset the OC4PE Bit */
      tmpccmr2 &= (uint16_t)(~TIM_CCMR2_OC4PE);
    
      /* Enable or Disable the Output Compare Preload feature */
      tmpccmr2 |= (uint16_t)(TIM_OCPreload << 8);
    
      /* Write to TIMx CCMR2 register */
      TIMx->CCMR2 = tmpccmr2;
    }
    
    /**
      * @brief  Configures the TIMx Output Compare 1 Fast feature.
      * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
      * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
      *          This parameter can be one of the following values:
      *            @arg TIM_OCFast_Enable: TIM output compare fast enable
      *            @arg TIM_OCFast_Disable: TIM output compare fast disable
      * @retval None
      */
    void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
    {
      uint16_t tmpccmr1 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx));
      assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
    
      /* Get the TIMx CCMR1 register value */
      tmpccmr1 = TIMx->CCMR1;
    
      /* Reset the OC1FE Bit */
      tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC1FE;
    
      /* Enable or Disable the Output Compare Fast Bit */
      tmpccmr1 |= TIM_OCFast;
    
      /* Write to TIMx CCMR1 */
      TIMx->CCMR1 = tmpccmr1;
    }
    
    /**
      * @brief  Configures the TIMx Output Compare 2 Fast feature.
      * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
      *          This parameter can be one of the following values:
      *            @arg TIM_OCFast_Enable: TIM output compare fast enable
      *            @arg TIM_OCFast_Disable: TIM output compare fast disable
      * @retval None
      */
    void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
    {
      uint16_t tmpccmr1 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
      assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
    
      /* Get the TIMx CCMR1 register value */
      tmpccmr1 = TIMx->CCMR1;
    
      /* Reset the OC2FE Bit */
      tmpccmr1 &= (uint16_t)(~TIM_CCMR1_OC2FE);
    
      /* Enable or Disable the Output Compare Fast Bit */
      tmpccmr1 |= (uint16_t)(TIM_OCFast << 8);
    
      /* Write to TIMx CCMR1 */
      TIMx->CCMR1 = tmpccmr1;
    }
    
    /**
      * @brief  Configures the TIMx Output Compare 3 Fast feature.
      * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
      *          This parameter can be one of the following values:
      *            @arg TIM_OCFast_Enable: TIM output compare fast enable
      *            @arg TIM_OCFast_Disable: TIM output compare fast disable
      * @retval None
      */
    void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
    {
      uint16_t tmpccmr2 = 0;
      
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
    
      /* Get the TIMx CCMR2 register value */
      tmpccmr2 = TIMx->CCMR2;
    
      /* Reset the OC3FE Bit */
      tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC3FE;
    
      /* Enable or Disable the Output Compare Fast Bit */
      tmpccmr2 |= TIM_OCFast;
    
      /* Write to TIMx CCMR2 */
      TIMx->CCMR2 = tmpccmr2;
    }
    
    /**
      * @brief  Configures the TIMx Output Compare 4 Fast feature.
      * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
      *          This parameter can be one of the following values:
      *            @arg TIM_OCFast_Enable: TIM output compare fast enable
      *            @arg TIM_OCFast_Disable: TIM output compare fast disable
      * @retval None
      */
    void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
    {
      uint16_t tmpccmr2 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
    
      /* Get the TIMx CCMR2 register value */
      tmpccmr2 = TIMx->CCMR2;
    
      /* Reset the OC4FE Bit */
      tmpccmr2 &= (uint16_t)(~TIM_CCMR2_OC4FE);
    
      /* Enable or Disable the Output Compare Fast Bit */
      tmpccmr2 |= (uint16_t)(TIM_OCFast << 8);
    
      /* Write to TIMx CCMR2 */
      TIMx->CCMR2 = tmpccmr2;
    }
    
    /**
      * @brief  Clears or safeguards the OCREF1 signal on an external event
      * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
      * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
      *          This parameter can be one of the following values:
      *            @arg TIM_OCClear_Enable: TIM Output clear enable
      *            @arg TIM_OCClear_Disable: TIM Output clear disable
      * @retval None
      */
    void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
    {
      uint16_t tmpccmr1 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx));
      assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
    
      tmpccmr1 = TIMx->CCMR1;
    
      /* Reset the OC1CE Bit */
      tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC1CE;
    
      /* Enable or Disable the Output Compare Clear Bit */
      tmpccmr1 |= TIM_OCClear;
    
      /* Write to TIMx CCMR1 register */
      TIMx->CCMR1 = tmpccmr1;
    }
    
    /**
      * @brief  Clears or safeguards the OCREF2 signal on an external event
      * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
      *          This parameter can be one of the following values:
      *            @arg TIM_OCClear_Enable: TIM Output clear enable
      *            @arg TIM_OCClear_Disable: TIM Output clear disable
      * @retval None
      */
    void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
    {
      uint16_t tmpccmr1 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
      assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
    
      tmpccmr1 = TIMx->CCMR1;
    
      /* Reset the OC2CE Bit */
      tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC2CE;
    
      /* Enable or Disable the Output Compare Clear Bit */
      tmpccmr1 |= (uint16_t)(TIM_OCClear << 8);
    
      /* Write to TIMx CCMR1 register */
      TIMx->CCMR1 = tmpccmr1;
    }
    
    /**
      * @brief  Clears or safeguards the OCREF3 signal on an external event
      * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
      *          This parameter can be one of the following values:
      *            @arg TIM_OCClear_Enable: TIM Output clear enable
      *            @arg TIM_OCClear_Disable: TIM Output clear disable
      * @retval None
      */
    void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
    {
      uint16_t tmpccmr2 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
    
      tmpccmr2 = TIMx->CCMR2;
    
      /* Reset the OC3CE Bit */
      tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC3CE;
    
      /* Enable or Disable the Output Compare Clear Bit */
      tmpccmr2 |= TIM_OCClear;
    
      /* Write to TIMx CCMR2 register */
      TIMx->CCMR2 = tmpccmr2;
    }
    
    /**
      * @brief  Clears or safeguards the OCREF4 signal on an external event
      * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
      *          This parameter can be one of the following values:
      *            @arg TIM_OCClear_Enable: TIM Output clear enable
      *            @arg TIM_OCClear_Disable: TIM Output clear disable
      * @retval None
      */
    void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
    {
      uint16_t tmpccmr2 = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
    
      tmpccmr2 = TIMx->CCMR2;
    
      /* Reset the OC4CE Bit */
      tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC4CE;
    
      /* Enable or Disable the Output Compare Clear Bit */
      tmpccmr2 |= (uint16_t)(TIM_OCClear << 8);
    
      /* Write to TIMx CCMR2 register */
      TIMx->CCMR2 = tmpccmr2;
    }
    
    /**
      * @brief  Configures the TIMx channel 1 polarity.
      * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
      * @param  TIM_OCPolarity: specifies the OC1 Polarity
      *          This parameter can be one of the following values:
      *            @arg TIM_OCPolarity_High: Output Compare active high
      *            @arg TIM_OCPolarity_Low: Output Compare active low
      * @retval None
      */
    void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
    {
      uint16_t tmpccer = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx));
      assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
    
      tmpccer = TIMx->CCER;
    
      /* Set or Reset the CC1P Bit */
      tmpccer &= (uint16_t)(~TIM_CCER_CC1P);
      tmpccer |= TIM_OCPolarity;
    
      /* Write to TIMx CCER register */
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Configures the TIMx Channel 1N polarity.
      * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
      * @param  TIM_OCNPolarity: specifies the OC1N Polarity
      *          This parameter can be one of the following values:
      *            @arg TIM_OCNPolarity_High: Output Compare active high
      *            @arg TIM_OCNPolarity_Low: Output Compare active low
      * @retval None
      */
    void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
    {
      uint16_t tmpccer = 0;
      /* Check the parameters */
      assert_param(IS_TIM_LIST4_PERIPH(TIMx));
      assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
       
      tmpccer = TIMx->CCER;
    
      /* Set or Reset the CC1NP Bit */
      tmpccer &= (uint16_t)~TIM_CCER_CC1NP;
      tmpccer |= TIM_OCNPolarity;
    
      /* Write to TIMx CCER register */
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Configures the TIMx channel 2 polarity.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @param  TIM_OCPolarity: specifies the OC2 Polarity
      *          This parameter can be one of the following values:
      *            @arg TIM_OCPolarity_High: Output Compare active high
      *            @arg TIM_OCPolarity_Low: Output Compare active low
      * @retval None
      */
    void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
    {
      uint16_t tmpccer = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
      assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
    
      tmpccer = TIMx->CCER;
    
      /* Set or Reset the CC2P Bit */
      tmpccer &= (uint16_t)(~TIM_CCER_CC2P);
      tmpccer |= (uint16_t)(TIM_OCPolarity << 4);
    
      /* Write to TIMx CCER register */
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Configures the TIMx Channel 2N polarity.
      * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
      * @param  TIM_OCNPolarity: specifies the OC2N Polarity
      *          This parameter can be one of the following values:
      *            @arg TIM_OCNPolarity_High: Output Compare active high
      *            @arg TIM_OCNPolarity_Low: Output Compare active low
      * @retval None
      */
    void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
    {
      uint16_t tmpccer = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST4_PERIPH(TIMx));
      assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
      
      tmpccer = TIMx->CCER;
    
      /* Set or Reset the CC2NP Bit */
      tmpccer &= (uint16_t)~TIM_CCER_CC2NP;
      tmpccer |= (uint16_t)(TIM_OCNPolarity << 4);
    
      /* Write to TIMx CCER register */
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Configures the TIMx channel 3 polarity.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_OCPolarity: specifies the OC3 Polarity
      *          This parameter can be one of the following values:
      *            @arg TIM_OCPolarity_High: Output Compare active high
      *            @arg TIM_OCPolarity_Low: Output Compare active low
      * @retval None
      */
    void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
    {
      uint16_t tmpccer = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
    
      tmpccer = TIMx->CCER;
    
      /* Set or Reset the CC3P Bit */
      tmpccer &= (uint16_t)~TIM_CCER_CC3P;
      tmpccer |= (uint16_t)(TIM_OCPolarity << 8);
    
      /* Write to TIMx CCER register */
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Configures the TIMx Channel 3N polarity.
      * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
      * @param  TIM_OCNPolarity: specifies the OC3N Polarity
      *          This parameter can be one of the following values:
      *            @arg TIM_OCNPolarity_High: Output Compare active high
      *            @arg TIM_OCNPolarity_Low: Output Compare active low
      * @retval None
      */
    void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
    {
      uint16_t tmpccer = 0;
     
      /* Check the parameters */
      assert_param(IS_TIM_LIST4_PERIPH(TIMx));
      assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
        
      tmpccer = TIMx->CCER;
    
      /* Set or Reset the CC3NP Bit */
      tmpccer &= (uint16_t)~TIM_CCER_CC3NP;
      tmpccer |= (uint16_t)(TIM_OCNPolarity << 8);
    
      /* Write to TIMx CCER register */
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Configures the TIMx channel 4 polarity.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_OCPolarity: specifies the OC4 Polarity
      *          This parameter can be one of the following values:
      *            @arg TIM_OCPolarity_High: Output Compare active high
      *            @arg TIM_OCPolarity_Low: Output Compare active low
      * @retval None
      */
    void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
    {
      uint16_t tmpccer = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
    
      tmpccer = TIMx->CCER;
    
      /* Set or Reset the CC4P Bit */
      tmpccer &= (uint16_t)~TIM_CCER_CC4P;
      tmpccer |= (uint16_t)(TIM_OCPolarity << 12);
    
      /* Write to TIMx CCER register */
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Enables or disables the TIM Capture Compare Channel x.
      * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
      * @param  TIM_Channel: specifies the TIM Channel
      *          This parameter can be one of the following values:
      *            @arg TIM_Channel_1: TIM Channel 1
      *            @arg TIM_Channel_2: TIM Channel 2
      *            @arg TIM_Channel_3: TIM Channel 3
      *            @arg TIM_Channel_4: TIM Channel 4
      * @param  TIM_CCx: specifies the TIM Channel CCxE bit new state.
      *          This parameter can be: TIM_CCx_Enable or TIM_CCx_Disable. 
      * @retval None
      */
    void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx)
    {
      uint16_t tmp = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx)); 
      assert_param(IS_TIM_CHANNEL(TIM_Channel));
      assert_param(IS_TIM_CCX(TIM_CCx));
    
      tmp = CCER_CCE_SET << TIM_Channel;
    
      /* Reset the CCxE Bit */
      TIMx->CCER &= (uint16_t)~ tmp;
    
      /* Set or reset the CCxE Bit */ 
      TIMx->CCER |=  (uint16_t)(TIM_CCx << TIM_Channel);
    }
    
    /**
      * @brief  Enables or disables the TIM Capture Compare Channel xN.
      * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
      * @param  TIM_Channel: specifies the TIM Channel
      *          This parameter can be one of the following values:
      *            @arg TIM_Channel_1: TIM Channel 1
      *            @arg TIM_Channel_2: TIM Channel 2
      *            @arg TIM_Channel_3: TIM Channel 3
      * @param  TIM_CCxN: specifies the TIM Channel CCxNE bit new state.
      *          This parameter can be: TIM_CCxN_Enable or TIM_CCxN_Disable. 
      * @retval None
      */
    void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN)
    {
      uint16_t tmp = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST4_PERIPH(TIMx));
      assert_param(IS_TIM_COMPLEMENTARY_CHANNEL(TIM_Channel));
      assert_param(IS_TIM_CCXN(TIM_CCxN));
    
      tmp = CCER_CCNE_SET << TIM_Channel;
    
      /* Reset the CCxNE Bit */
      TIMx->CCER &= (uint16_t) ~tmp;
    
      /* Set or reset the CCxNE Bit */ 
      TIMx->CCER |=  (uint16_t)(TIM_CCxN << TIM_Channel);
    }
    /**
      * @}
      */
    
    /** @defgroup TIM_Group3 Input Capture management functions
     *  @brief    Input Capture management functions 
     *
    @verbatim   
     ===============================================================================
                      ##### Input Capture management functions #####
     ===============================================================================  
             
                ##### TIM Driver: how to use it in Input Capture Mode #####
     ===============================================================================
        [..]    
        To use the Timer in Input Capture mode, the following steps are mandatory:
           
          (#) Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) 
              function
           
          (#) Configure the TIM pins by configuring the corresponding GPIO pins
           
          (#) Configure the Time base unit as described in the first part of this driver,
              if needed, else the Timer will run with the default configuration:
            (++) Autoreload value = 0xFFFF
            (++) Prescaler value = 0x0000
            (++) Counter mode = Up counting
            (++) Clock Division = TIM_CKD_DIV1
              
          (#) Fill the TIM_ICInitStruct with the desired parameters including:
            (++) TIM Channel: TIM_Channel
            (++) TIM Input Capture polarity: TIM_ICPolarity
            (++) TIM Input Capture selection: TIM_ICSelection
            (++) TIM Input Capture Prescaler: TIM_ICPrescaler
            (++) TIM Input CApture filter value: TIM_ICFilter
           
          (#) Call TIM_ICInit(TIMx, &TIM_ICInitStruct) to configure the desired channel 
              with the corresponding configuration and to measure only frequency 
              or duty cycle of the input signal, or, Call TIM_PWMIConfig(TIMx, &TIM_ICInitStruct) 
              to configure the desired channels with the corresponding configuration 
              and to measure the frequency and the duty cycle of the input signal
              
          (#) Enable the NVIC or the DMA to read the measured frequency. 
              
          (#) Enable the corresponding interrupt (or DMA request) to read the Captured 
              value, using the function TIM_ITConfig(TIMx, TIM_IT_CCx) 
              (or TIM_DMA_Cmd(TIMx, TIM_DMA_CCx)) 
           
          (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
           
          (#) Use TIM_GetCapturex(TIMx); to read the captured value.
           
          -@- All other functions can be used separately to modify, if needed,
              a specific feature of the Timer. 
    
    @endverbatim
      * @{
      */
    
    /**
      * @brief  Initializes the TIM peripheral according to the specified parameters
      *         in the TIM_ICInitStruct.
      * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
      * @param  TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure that contains
      *         the configuration information for the specified TIM peripheral.
      * @retval None
      */
    void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx));
      assert_param(IS_TIM_IC_POLARITY(TIM_ICInitStruct->TIM_ICPolarity));
      assert_param(IS_TIM_IC_SELECTION(TIM_ICInitStruct->TIM_ICSelection));
      assert_param(IS_TIM_IC_PRESCALER(TIM_ICInitStruct->TIM_ICPrescaler));
      assert_param(IS_TIM_IC_FILTER(TIM_ICInitStruct->TIM_ICFilter));
      
      if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
      {
        /* TI1 Configuration */
        TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
                   TIM_ICInitStruct->TIM_ICSelection,
                   TIM_ICInitStruct->TIM_ICFilter);
        /* Set the Input Capture Prescaler value */
        TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
      }
      else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_2)
      {
        /* TI2 Configuration */
        assert_param(IS_TIM_LIST2_PERIPH(TIMx));
        TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
                   TIM_ICInitStruct->TIM_ICSelection,
                   TIM_ICInitStruct->TIM_ICFilter);
        /* Set the Input Capture Prescaler value */
        TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
      }
      else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_3)
      {
        /* TI3 Configuration */
        assert_param(IS_TIM_LIST3_PERIPH(TIMx));
        TI3_Config(TIMx,  TIM_ICInitStruct->TIM_ICPolarity,
                   TIM_ICInitStruct->TIM_ICSelection,
                   TIM_ICInitStruct->TIM_ICFilter);
        /* Set the Input Capture Prescaler value */
        TIM_SetIC3Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
      }
      else
      {
        /* TI4 Configuration */
        assert_param(IS_TIM_LIST3_PERIPH(TIMx));
        TI4_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
                   TIM_ICInitStruct->TIM_ICSelection,
                   TIM_ICInitStruct->TIM_ICFilter);
        /* Set the Input Capture Prescaler value */
        TIM_SetIC4Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
      }
    }
    
    /**
      * @brief  Fills each TIM_ICInitStruct member with its default value.
      * @param  TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure which will
      *         be initialized.
      * @retval None
      */
    void TIM_ICStructInit(TIM_ICInitTypeDef* TIM_ICInitStruct)
    {
      /* Set the default configuration */
      TIM_ICInitStruct->TIM_Channel = TIM_Channel_1;
      TIM_ICInitStruct->TIM_ICPolarity = TIM_ICPolarity_Rising;
      TIM_ICInitStruct->TIM_ICSelection = TIM_ICSelection_DirectTI;
      TIM_ICInitStruct->TIM_ICPrescaler = TIM_ICPSC_DIV1;
      TIM_ICInitStruct->TIM_ICFilter = 0x00;
    }
    
    /**
      * @brief  Configures the TIM peripheral according to the specified parameters
      *         in the TIM_ICInitStruct to measure an external PWM signal.
      * @param  TIMx: where x can be  1, 2, 3, 4, 5,8, 9 or 12 to select the TIM 
      *         peripheral.
      * @param  TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure that contains
      *         the configuration information for the specified TIM peripheral.
      * @retval None
      */
    void TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
    {
      uint16_t icoppositepolarity = TIM_ICPolarity_Rising;
      uint16_t icoppositeselection = TIM_ICSelection_DirectTI;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
    
      /* Select the Opposite Input Polarity */
      if (TIM_ICInitStruct->TIM_ICPolarity == TIM_ICPolarity_Rising)
      {
        icoppositepolarity = TIM_ICPolarity_Falling;
      }
      else
      {
        icoppositepolarity = TIM_ICPolarity_Rising;
      }
      /* Select the Opposite Input */
      if (TIM_ICInitStruct->TIM_ICSelection == TIM_ICSelection_DirectTI)
      {
        icoppositeselection = TIM_ICSelection_IndirectTI;
      }
      else
      {
        icoppositeselection = TIM_ICSelection_DirectTI;
      }
      if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
      {
        /* TI1 Configuration */
        TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
                   TIM_ICInitStruct->TIM_ICFilter);
        /* Set the Input Capture Prescaler value */
        TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
        /* TI2 Configuration */
        TI2_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
        /* Set the Input Capture Prescaler value */
        TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
      }
      else
      { 
        /* TI2 Configuration */
        TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
                   TIM_ICInitStruct->TIM_ICFilter);
        /* Set the Input Capture Prescaler value */
        TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
        /* TI1 Configuration */
        TI1_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
        /* Set the Input Capture Prescaler value */
        TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
      }
    }
    
    /**
      * @brief  Gets the TIMx Input Capture 1 value.
      * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
      * @retval Capture Compare 1 Register value.
      */
    uint32_t TIM_GetCapture1(TIM_TypeDef* TIMx)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx));
    
      /* Get the Capture 1 Register value */
      return TIMx->CCR1;
    }
    
    /**
      * @brief  Gets the TIMx Input Capture 2 value.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @retval Capture Compare 2 Register value.
      */
    uint32_t TIM_GetCapture2(TIM_TypeDef* TIMx)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
    
      /* Get the Capture 2 Register value */
      return TIMx->CCR2;
    }
    
    /**
      * @brief  Gets the TIMx Input Capture 3 value.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @retval Capture Compare 3 Register value.
      */
    uint32_t TIM_GetCapture3(TIM_TypeDef* TIMx)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 
    
      /* Get the Capture 3 Register value */
      return TIMx->CCR3;
    }
    
    /**
      * @brief  Gets the TIMx Input Capture 4 value.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @retval Capture Compare 4 Register value.
      */
    uint32_t TIM_GetCapture4(TIM_TypeDef* TIMx)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
    
      /* Get the Capture 4 Register value */
      return TIMx->CCR4;
    }
    
    /**
      * @brief  Sets the TIMx Input Capture 1 prescaler.
      * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
      * @param  TIM_ICPSC: specifies the Input Capture1 prescaler new value.
      *          This parameter can be one of the following values:
      *            @arg TIM_ICPSC_DIV1: no prescaler
      *            @arg TIM_ICPSC_DIV2: capture is done once every 2 events
      *            @arg TIM_ICPSC_DIV4: capture is done once every 4 events
      *            @arg TIM_ICPSC_DIV8: capture is done once every 8 events
      * @retval None
      */
    void TIM_SetIC1Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx));
      assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
    
      /* Reset the IC1PSC Bits */
      TIMx->CCMR1 &= (uint16_t)~TIM_CCMR1_IC1PSC;
    
      /* Set the IC1PSC value */
      TIMx->CCMR1 |= TIM_ICPSC;
    }
    
    /**
      * @brief  Sets the TIMx Input Capture 2 prescaler.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @param  TIM_ICPSC: specifies the Input Capture2 prescaler new value.
      *          This parameter can be one of the following values:
      *            @arg TIM_ICPSC_DIV1: no prescaler
      *            @arg TIM_ICPSC_DIV2: capture is done once every 2 events
      *            @arg TIM_ICPSC_DIV4: capture is done once every 4 events
      *            @arg TIM_ICPSC_DIV8: capture is done once every 8 events
      * @retval None
      */
    void TIM_SetIC2Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
      assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
    
      /* Reset the IC2PSC Bits */
      TIMx->CCMR1 &= (uint16_t)~TIM_CCMR1_IC2PSC;
    
      /* Set the IC2PSC value */
      TIMx->CCMR1 |= (uint16_t)(TIM_ICPSC << 8);
    }
    
    /**
      * @brief  Sets the TIMx Input Capture 3 prescaler.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_ICPSC: specifies the Input Capture3 prescaler new value.
      *          This parameter can be one of the following values:
      *            @arg TIM_ICPSC_DIV1: no prescaler
      *            @arg TIM_ICPSC_DIV2: capture is done once every 2 events
      *            @arg TIM_ICPSC_DIV4: capture is done once every 4 events
      *            @arg TIM_ICPSC_DIV8: capture is done once every 8 events
      * @retval None
      */
    void TIM_SetIC3Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
    
      /* Reset the IC3PSC Bits */
      TIMx->CCMR2 &= (uint16_t)~TIM_CCMR2_IC3PSC;
    
      /* Set the IC3PSC value */
      TIMx->CCMR2 |= TIM_ICPSC;
    }
    
    /**
      * @brief  Sets the TIMx Input Capture 4 prescaler.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_ICPSC: specifies the Input Capture4 prescaler new value.
      *          This parameter can be one of the following values:
      *            @arg TIM_ICPSC_DIV1: no prescaler
      *            @arg TIM_ICPSC_DIV2: capture is done once every 2 events
      *            @arg TIM_ICPSC_DIV4: capture is done once every 4 events
      *            @arg TIM_ICPSC_DIV8: capture is done once every 8 events
      * @retval None
      */
    void TIM_SetIC4Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
    {  
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
    
      /* Reset the IC4PSC Bits */
      TIMx->CCMR2 &= (uint16_t)~TIM_CCMR2_IC4PSC;
    
      /* Set the IC4PSC value */
      TIMx->CCMR2 |= (uint16_t)(TIM_ICPSC << 8);
    }
    /**
      * @}
      */
    
    /** @defgroup TIM_Group4 Advanced-control timers (TIM1 and TIM8) specific features
     *  @brief   Advanced-control timers (TIM1 and TIM8) specific features
     *
    @verbatim   
     ===============================================================================
          ##### Advanced-control timers (TIM1 and TIM8) specific features #####
     ===============================================================================  
            
                 ##### TIM Driver: how to use the Break feature #####
     ===============================================================================
        [..] 
        After configuring the Timer channel(s) in the appropriate Output Compare mode: 
                             
          (#) Fill the TIM_BDTRInitStruct with the desired parameters for the Timer
              Break Polarity, dead time, Lock level, the OSSI/OSSR State and the 
              AOE(automatic output enable).
                   
          (#) Call TIM_BDTRConfig(TIMx, &TIM_BDTRInitStruct) to configure the Timer
              
          (#) Enable the Main Output using TIM_CtrlPWMOutputs(TIM1, ENABLE) 
              
          (#) Once the break even occurs, the Timer's output signals are put in reset
              state or in a known state (according to the configuration made in
              TIM_BDTRConfig() function).
    
    @endverbatim
      * @{
      */
    
    /**
      * @brief  Configures the Break feature, dead time, Lock level, OSSI/OSSR State
      *         and the AOE(automatic output enable).
      * @param  TIMx: where x can be  1 or 8 to select the TIM 
      * @param  TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure that
      *         contains the BDTR Register configuration  information for the TIM peripheral.
      * @retval None
      */
    void TIM_BDTRConfig(TIM_TypeDef* TIMx, TIM_BDTRInitTypeDef *TIM_BDTRInitStruct)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST4_PERIPH(TIMx));
      assert_param(IS_TIM_OSSR_STATE(TIM_BDTRInitStruct->TIM_OSSRState));
      assert_param(IS_TIM_OSSI_STATE(TIM_BDTRInitStruct->TIM_OSSIState));
      assert_param(IS_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->TIM_LOCKLevel));
      assert_param(IS_TIM_BREAK_STATE(TIM_BDTRInitStruct->TIM_Break));
      assert_param(IS_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->TIM_BreakPolarity));
      assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->TIM_AutomaticOutput));
    
      /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
         the OSSI State, the dead time value and the Automatic Output Enable Bit */
      TIMx->BDTR = (uint32_t)TIM_BDTRInitStruct->TIM_OSSRState | TIM_BDTRInitStruct->TIM_OSSIState |
                 TIM_BDTRInitStruct->TIM_LOCKLevel | TIM_BDTRInitStruct->TIM_DeadTime |
                 TIM_BDTRInitStruct->TIM_Break | TIM_BDTRInitStruct->TIM_BreakPolarity |
                 TIM_BDTRInitStruct->TIM_AutomaticOutput;
    }
    
    /**
      * @brief  Fills each TIM_BDTRInitStruct member with its default value.
      * @param  TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure which
      *         will be initialized.
      * @retval None
      */
    void TIM_BDTRStructInit(TIM_BDTRInitTypeDef* TIM_BDTRInitStruct)
    {
      /* Set the default configuration */
      TIM_BDTRInitStruct->TIM_OSSRState = TIM_OSSRState_Disable;
      TIM_BDTRInitStruct->TIM_OSSIState = TIM_OSSIState_Disable;
      TIM_BDTRInitStruct->TIM_LOCKLevel = TIM_LOCKLevel_OFF;
      TIM_BDTRInitStruct->TIM_DeadTime = 0x00;
      TIM_BDTRInitStruct->TIM_Break = TIM_Break_Disable;
      TIM_BDTRInitStruct->TIM_BreakPolarity = TIM_BreakPolarity_Low;
      TIM_BDTRInitStruct->TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;
    }
    
    /**
      * @brief  Enables or disables the TIM peripheral Main Outputs.
      * @param  TIMx: where x can be 1 or 8 to select the TIMx peripheral.
      * @param  NewState: new state of the TIM peripheral Main Outputs.
      *          This parameter can be: ENABLE or DISABLE.
      * @retval None
      */
    void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST4_PERIPH(TIMx));
      assert_param(IS_FUNCTIONAL_STATE(NewState));
    
      if (NewState != DISABLE)
      {
        /* Enable the TIM Main Output */
        TIMx->BDTR |= TIM_BDTR_MOE;
      }
      else
      {
        /* Disable the TIM Main Output */
        TIMx->BDTR &= (uint16_t)~TIM_BDTR_MOE;
      }  
    }
    
    /**
      * @brief  Selects the TIM peripheral Commutation event.
      * @param  TIMx: where x can be  1 or 8 to select the TIMx peripheral
      * @param  NewState: new state of the Commutation event.
      *          This parameter can be: ENABLE or DISABLE.
      * @retval None
      */
    void TIM_SelectCOM(TIM_TypeDef* TIMx, FunctionalState NewState)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST4_PERIPH(TIMx));
      assert_param(IS_FUNCTIONAL_STATE(NewState));
    
      if (NewState != DISABLE)
      {
        /* Set the COM Bit */
        TIMx->CR2 |= TIM_CR2_CCUS;
      }
      else
      {
        /* Reset the COM Bit */
        TIMx->CR2 &= (uint16_t)~TIM_CR2_CCUS;
      }
    }
    
    /**
      * @brief  Sets or Resets the TIM peripheral Capture Compare Preload Control bit.
      * @param  TIMx: where x can be  1 or 8 to select the TIMx peripheral
      * @param  NewState: new state of the Capture Compare Preload Control bit
      *          This parameter can be: ENABLE or DISABLE.
      * @retval None
      */
    void TIM_CCPreloadControl(TIM_TypeDef* TIMx, FunctionalState NewState)
    { 
      /* Check the parameters */
      assert_param(IS_TIM_LIST4_PERIPH(TIMx));
      assert_param(IS_FUNCTIONAL_STATE(NewState));
      if (NewState != DISABLE)
      {
        /* Set the CCPC Bit */
        TIMx->CR2 |= TIM_CR2_CCPC;
      }
      else
      {
        /* Reset the CCPC Bit */
        TIMx->CR2 &= (uint16_t)~TIM_CR2_CCPC;
      }
    }
    /**
      * @}
      */
    
    /** @defgroup TIM_Group5 Interrupts DMA and flags management functions
     *  @brief    Interrupts, DMA and flags management functions 
     *
    @verbatim   
     ===============================================================================
              ##### Interrupts, DMA and flags management functions #####
     ===============================================================================  
    
    @endverbatim
      * @{
      */
    
    /**
      * @brief  Enables or disables the specified TIM interrupts.
      * @param  TIMx: where x can be 1 to 14 to select the TIMx peripheral.
      * @param  TIM_IT: specifies the TIM interrupts sources to be enabled or disabled.
      *          This parameter can be any combination of the following values:
      *            @arg TIM_IT_Update: TIM update Interrupt source
      *            @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
      *            @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
      *            @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
      *            @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
      *            @arg TIM_IT_COM: TIM Commutation Interrupt source
      *            @arg TIM_IT_Trigger: TIM Trigger Interrupt source
      *            @arg TIM_IT_Break: TIM Break Interrupt source
      *  
      * @note   For TIM6 and TIM7 only the parameter TIM_IT_Update can be used
      * @note   For TIM9 and TIM12 only one of the following parameters can be used: TIM_IT_Update,
      *          TIM_IT_CC1, TIM_IT_CC2 or TIM_IT_Trigger. 
      * @note   For TIM10, TIM11, TIM13 and TIM14 only one of the following parameters can
      *          be used: TIM_IT_Update or TIM_IT_CC1   
      * @note   TIM_IT_COM and TIM_IT_Break can be used only with TIM1 and TIM8 
      *        
      * @param  NewState: new state of the TIM interrupts.
      *          This parameter can be: ENABLE or DISABLE.
      * @retval None
      */
    void TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState)
    {  
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
      assert_param(IS_TIM_IT(TIM_IT));
      assert_param(IS_FUNCTIONAL_STATE(NewState));
      
      if (NewState != DISABLE)
      {
        /* Enable the Interrupt sources */
        TIMx->DIER |= TIM_IT;
      }
      else
      {
        /* Disable the Interrupt sources */
        TIMx->DIER &= (uint16_t)~TIM_IT;
      }
    }
    
    /**
      * @brief  Configures the TIMx event to be generate by software.
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @param  TIM_EventSource: specifies the event source.
      *          This parameter can be one or more of the following values:	   
      *            @arg TIM_EventSource_Update: Timer update Event source
      *            @arg TIM_EventSource_CC1: Timer Capture Compare 1 Event source
      *            @arg TIM_EventSource_CC2: Timer Capture Compare 2 Event source
      *            @arg TIM_EventSource_CC3: Timer Capture Compare 3 Event source
      *            @arg TIM_EventSource_CC4: Timer Capture Compare 4 Event source
      *            @arg TIM_EventSource_COM: Timer COM event source  
      *            @arg TIM_EventSource_Trigger: Timer Trigger Event source
      *            @arg TIM_EventSource_Break: Timer Break event source
      * 
      * @note   TIM6 and TIM7 can only generate an update event. 
      * @note   TIM_EventSource_COM and TIM_EventSource_Break are used only with TIM1 and TIM8.
      *        
      * @retval None
      */
    void TIM_GenerateEvent(TIM_TypeDef* TIMx, uint16_t TIM_EventSource)
    { 
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
      assert_param(IS_TIM_EVENT_SOURCE(TIM_EventSource));
     
      /* Set the event sources */
      TIMx->EGR = TIM_EventSource;
    }
    
    /**
      * @brief  Checks whether the specified TIM flag is set or not.
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @param  TIM_FLAG: specifies the flag to check.
      *          This parameter can be one of the following values:
      *            @arg TIM_FLAG_Update: TIM update Flag
      *            @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag
      *            @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag
      *            @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag
      *            @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag
      *            @arg TIM_FLAG_COM: TIM Commutation Flag
      *            @arg TIM_FLAG_Trigger: TIM Trigger Flag
      *            @arg TIM_FLAG_Break: TIM Break Flag
      *            @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 over capture Flag
      *            @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 over capture Flag
      *            @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 over capture Flag
      *            @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 over capture Flag
      *
      * @note   TIM6 and TIM7 can have only one update flag. 
      * @note   TIM_FLAG_COM and TIM_FLAG_Break are used only with TIM1 and TIM8.    
      *
      * @retval The new state of TIM_FLAG (SET or RESET).
      */
    FlagStatus TIM_GetFlagStatus(TIM_TypeDef* TIMx, uint16_t TIM_FLAG)
    { 
      ITStatus bitstatus = RESET;  
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
      assert_param(IS_TIM_GET_FLAG(TIM_FLAG));
    
      
      if ((TIMx->SR & TIM_FLAG) != (uint16_t)RESET)
      {
        bitstatus = SET;
      }
      else
      {
        bitstatus = RESET;
      }
      return bitstatus;
    }
    
    /**
      * @brief  Clears the TIMx's pending flags.
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @param  TIM_FLAG: specifies the flag bit to clear.
      *          This parameter can be any combination of the following values:
      *            @arg TIM_FLAG_Update: TIM update Flag
      *            @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag
      *            @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag
      *            @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag
      *            @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag
      *            @arg TIM_FLAG_COM: TIM Commutation Flag
      *            @arg TIM_FLAG_Trigger: TIM Trigger Flag
      *            @arg TIM_FLAG_Break: TIM Break Flag
      *            @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 over capture Flag
      *            @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 over capture Flag
      *            @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 over capture Flag
      *            @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 over capture Flag
      *
      * @note   TIM6 and TIM7 can have only one update flag. 
      * @note   TIM_FLAG_COM and TIM_FLAG_Break are used only with TIM1 and TIM8.
      *    
      * @retval None
      */
    void TIM_ClearFlag(TIM_TypeDef* TIMx, uint16_t TIM_FLAG)
    {  
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
       
      /* Clear the flags */
      TIMx->SR = (uint16_t)~TIM_FLAG;
    }
    
    /**
      * @brief  Checks whether the TIM interrupt has occurred or not.
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @param  TIM_IT: specifies the TIM interrupt source to check.
      *          This parameter can be one of the following values:
      *            @arg TIM_IT_Update: TIM update Interrupt source
      *            @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
      *            @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
      *            @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
      *            @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
      *            @arg TIM_IT_COM: TIM Commutation Interrupt source
      *            @arg TIM_IT_Trigger: TIM Trigger Interrupt source
      *            @arg TIM_IT_Break: TIM Break Interrupt source
      *
      * @note   TIM6 and TIM7 can generate only an update interrupt.
      * @note   TIM_IT_COM and TIM_IT_Break are used only with TIM1 and TIM8.
      *     
      * @retval The new state of the TIM_IT(SET or RESET).
      */
    ITStatus TIM_GetITStatus(TIM_TypeDef* TIMx, uint16_t TIM_IT)
    {
      ITStatus bitstatus = RESET;  
      uint16_t itstatus = 0x0, itenable = 0x0;
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
      assert_param(IS_TIM_GET_IT(TIM_IT));
       
      itstatus = TIMx->SR & TIM_IT;
      
      itenable = TIMx->DIER & TIM_IT;
      if ((itstatus != (uint16_t)RESET) && (itenable != (uint16_t)RESET))
      {
        bitstatus = SET;
      }
      else
      {
        bitstatus = RESET;
      }
      return bitstatus;
    }
    
    /**
      * @brief  Clears the TIMx's interrupt pending bits.
      * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
      * @param  TIM_IT: specifies the pending bit to clear.
      *          This parameter can be any combination of the following values:
      *            @arg TIM_IT_Update: TIM1 update Interrupt source
      *            @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
      *            @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
      *            @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
      *            @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
      *            @arg TIM_IT_COM: TIM Commutation Interrupt source
      *            @arg TIM_IT_Trigger: TIM Trigger Interrupt source
      *            @arg TIM_IT_Break: TIM Break Interrupt source
      *
      * @note   TIM6 and TIM7 can generate only an update interrupt.
      * @note   TIM_IT_COM and TIM_IT_Break are used only with TIM1 and TIM8.
      *      
      * @retval None
      */
    void TIM_ClearITPendingBit(TIM_TypeDef* TIMx, uint16_t TIM_IT)
    {
      /* Check the parameters */
      assert_param(IS_TIM_ALL_PERIPH(TIMx));
    
      /* Clear the IT pending Bit */
      TIMx->SR = (uint16_t)~TIM_IT;
    }
    
    /**
      * @brief  Configures the TIMx's DMA interface.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_DMABase: DMA Base address.
      *          This parameter can be one of the following values:
      *            @arg TIM_DMABase_CR1  
      *            @arg TIM_DMABase_CR2
      *            @arg TIM_DMABase_SMCR
      *            @arg TIM_DMABase_DIER
      *            @arg TIM1_DMABase_SR
      *            @arg TIM_DMABase_EGR
      *            @arg TIM_DMABase_CCMR1
      *            @arg TIM_DMABase_CCMR2
      *            @arg TIM_DMABase_CCER
      *            @arg TIM_DMABase_CNT   
      *            @arg TIM_DMABase_PSC   
      *            @arg TIM_DMABase_ARR
      *            @arg TIM_DMABase_RCR
      *            @arg TIM_DMABase_CCR1
      *            @arg TIM_DMABase_CCR2
      *            @arg TIM_DMABase_CCR3  
      *            @arg TIM_DMABase_CCR4
      *            @arg TIM_DMABase_BDTR
      *            @arg TIM_DMABase_DCR
      * @param  TIM_DMABurstLength: DMA Burst length. This parameter can be one value
      *         between: TIM_DMABurstLength_1Transfer and TIM_DMABurstLength_18Transfers.
      * @retval None
      */
    void TIM_DMAConfig(TIM_TypeDef* TIMx, uint16_t TIM_DMABase, uint16_t TIM_DMABurstLength)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_DMA_BASE(TIM_DMABase)); 
      assert_param(IS_TIM_DMA_LENGTH(TIM_DMABurstLength));
    
      /* Set the DMA Base and the DMA Burst Length */
      TIMx->DCR = TIM_DMABase | TIM_DMABurstLength;
    }
    
    /**
      * @brief  Enables or disables the TIMx's DMA Requests.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 6, 7 or 8 to select the TIM peripheral.
      * @param  TIM_DMASource: specifies the DMA Request sources.
      *          This parameter can be any combination of the following values:
      *            @arg TIM_DMA_Update: TIM update Interrupt source
      *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
      *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
      *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
      *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
      *            @arg TIM_DMA_COM: TIM Commutation DMA source
      *            @arg TIM_DMA_Trigger: TIM Trigger DMA source
      * @param  NewState: new state of the DMA Request sources.
      *          This parameter can be: ENABLE or DISABLE.
      * @retval None
      */
    void TIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, FunctionalState NewState)
    { 
      /* Check the parameters */
      assert_param(IS_TIM_LIST5_PERIPH(TIMx)); 
      assert_param(IS_TIM_DMA_SOURCE(TIM_DMASource));
      assert_param(IS_FUNCTIONAL_STATE(NewState));
      
      if (NewState != DISABLE)
      {
        /* Enable the DMA sources */
        TIMx->DIER |= TIM_DMASource; 
      }
      else
      {
        /* Disable the DMA sources */
        TIMx->DIER &= (uint16_t)~TIM_DMASource;
      }
    }
    
    /**
      * @brief  Selects the TIMx peripheral Capture Compare DMA source.
      * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  NewState: new state of the Capture Compare DMA source
      *          This parameter can be: ENABLE or DISABLE.
      * @retval None
      */
    void TIM_SelectCCDMA(TIM_TypeDef* TIMx, FunctionalState NewState)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_FUNCTIONAL_STATE(NewState));
    
      if (NewState != DISABLE)
      {
        /* Set the CCDS Bit */
        TIMx->CR2 |= TIM_CR2_CCDS;
      }
      else
      {
        /* Reset the CCDS Bit */
        TIMx->CR2 &= (uint16_t)~TIM_CR2_CCDS;
      }
    }
    /**
      * @}
      */
    
    /** @defgroup TIM_Group6 Clocks management functions
     *  @brief    Clocks management functions
     *
    @verbatim   
     ===============================================================================
                      ##### Clocks management functions #####
     ===============================================================================  
    
    @endverbatim
      * @{
      */
    
    /**
      * @brief  Configures the TIMx internal Clock
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @retval None
      */
    void TIM_InternalClockConfig(TIM_TypeDef* TIMx)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
    
      /* Disable slave mode to clock the prescaler directly with the internal clock */
      TIMx->SMCR &=  (uint16_t)~TIM_SMCR_SMS;
    }
    
    /**
      * @brief  Configures the TIMx Internal Trigger as External Clock
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @param  TIM_InputTriggerSource: Trigger source.
      *          This parameter can be one of the following values:
      *            @arg TIM_TS_ITR0: Internal Trigger 0
      *            @arg TIM_TS_ITR1: Internal Trigger 1
      *            @arg TIM_TS_ITR2: Internal Trigger 2
      *            @arg TIM_TS_ITR3: Internal Trigger 3
      * @retval None
      */
    void TIM_ITRxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
      assert_param(IS_TIM_INTERNAL_TRIGGER_SELECTION(TIM_InputTriggerSource));
    
      /* Select the Internal Trigger */
      TIM_SelectInputTrigger(TIMx, TIM_InputTriggerSource);
    
      /* Select the External clock mode1 */
      TIMx->SMCR |= TIM_SlaveMode_External1;
    }
    
    /**
      * @brief  Configures the TIMx Trigger as External Clock
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13 or 14  
      *         to select the TIM peripheral.
      * @param  TIM_TIxExternalCLKSource: Trigger source.
      *          This parameter can be one of the following values:
      *            @arg TIM_TIxExternalCLK1Source_TI1ED: TI1 Edge Detector
      *            @arg TIM_TIxExternalCLK1Source_TI1: Filtered Timer Input 1
      *            @arg TIM_TIxExternalCLK1Source_TI2: Filtered Timer Input 2
      * @param  TIM_ICPolarity: specifies the TIx Polarity.
      *          This parameter can be one of the following values:
      *            @arg TIM_ICPolarity_Rising
      *            @arg TIM_ICPolarity_Falling
      * @param  ICFilter: specifies the filter value.
      *          This parameter must be a value between 0x0 and 0xF.
      * @retval None
      */
    void TIM_TIxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_TIxExternalCLKSource,
                                    uint16_t TIM_ICPolarity, uint16_t ICFilter)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx));
      assert_param(IS_TIM_IC_POLARITY(TIM_ICPolarity));
      assert_param(IS_TIM_IC_FILTER(ICFilter));
    
      /* Configure the Timer Input Clock Source */
      if (TIM_TIxExternalCLKSource == TIM_TIxExternalCLK1Source_TI2)
      {
        TI2_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
      }
      else
      {
        TI1_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
      }
      /* Select the Trigger source */
      TIM_SelectInputTrigger(TIMx, TIM_TIxExternalCLKSource);
      /* Select the External clock mode1 */
      TIMx->SMCR |= TIM_SlaveMode_External1;
    }
    
    /**
      * @brief  Configures the External clock Mode1
      * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_ExtTRGPrescaler: The external Trigger Prescaler.
      *          This parameter can be one of the following values:
      *            @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
      *            @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
      *            @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
      *            @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
      * @param  TIM_ExtTRGPolarity: The external Trigger Polarity.
      *          This parameter can be one of the following values:
      *            @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
      *            @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
      * @param  ExtTRGFilter: External Trigger Filter.
      *          This parameter must be a value between 0x00 and 0x0F
      * @retval None
      */
    void TIM_ETRClockMode1Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
                                uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
    {
      uint16_t tmpsmcr = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
      assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
      assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
      /* Configure the ETR Clock source */
      TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);
      
      /* Get the TIMx SMCR register value */
      tmpsmcr = TIMx->SMCR;
    
      /* Reset the SMS Bits */
      tmpsmcr &= (uint16_t)~TIM_SMCR_SMS;
    
      /* Select the External clock mode1 */
      tmpsmcr |= TIM_SlaveMode_External1;
    
      /* Select the Trigger selection : ETRF */
      tmpsmcr &= (uint16_t)~TIM_SMCR_TS;
      tmpsmcr |= TIM_TS_ETRF;
    
      /* Write to TIMx SMCR */
      TIMx->SMCR = tmpsmcr;
    }
    
    /**
      * @brief  Configures the External clock Mode2
      * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_ExtTRGPrescaler: The external Trigger Prescaler.
      *          This parameter can be one of the following values:
      *            @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
      *            @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
      *            @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
      *            @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
      * @param  TIM_ExtTRGPolarity: The external Trigger Polarity.
      *          This parameter can be one of the following values:
      *            @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
      *            @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
      * @param  ExtTRGFilter: External Trigger Filter.
      *          This parameter must be a value between 0x00 and 0x0F
      * @retval None
      */
    void TIM_ETRClockMode2Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, 
                                 uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
      assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
      assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
    
      /* Configure the ETR Clock source */
      TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);
    
      /* Enable the External clock mode2 */
      TIMx->SMCR |= TIM_SMCR_ECE;
    }
    /**
      * @}
      */
    
    /** @defgroup TIM_Group7 Synchronization management functions
     *  @brief    Synchronization management functions 
     *
    @verbatim   
     ===============================================================================
                    ##### Synchronization management functions #####
     ===============================================================================  
                             
              ##### TIM Driver: how to use it in synchronization Mode #####
     ===============================================================================
        [..] 
        
        *** Case of two/several Timers ***
        ==================================
        [..]
          (#) Configure the Master Timers using the following functions:
            (++) void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource); 
            (++) void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode);  
          (#) Configure the Slave Timers using the following functions: 
            (++) void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource);  
            (++) void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode); 
              
        *** Case of Timers and external trigger(ETR pin) ***
        ====================================================
        [..]           
          (#) Configure the External trigger using this function:
            (++) void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,
                                   uint16_t ExtTRGFilter);
          (#) Configure the Slave Timers using the following functions: 
            (++) void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource);  
            (++) void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode); 
    
    @endverbatim
      * @{
      */
    
    /**
      * @brief  Selects the Input Trigger source
      * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13 or 14  
      *         to select the TIM peripheral.
      * @param  TIM_InputTriggerSource: The Input Trigger source.
      *          This parameter can be one of the following values:
      *            @arg TIM_TS_ITR0: Internal Trigger 0
      *            @arg TIM_TS_ITR1: Internal Trigger 1
      *            @arg TIM_TS_ITR2: Internal Trigger 2
      *            @arg TIM_TS_ITR3: Internal Trigger 3
      *            @arg TIM_TS_TI1F_ED: TI1 Edge Detector
      *            @arg TIM_TS_TI1FP1: Filtered Timer Input 1
      *            @arg TIM_TS_TI2FP2: Filtered Timer Input 2
      *            @arg TIM_TS_ETRF: External Trigger input
      * @retval None
      */
    void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
    {
      uint16_t tmpsmcr = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST1_PERIPH(TIMx)); 
      assert_param(IS_TIM_TRIGGER_SELECTION(TIM_InputTriggerSource));
    
      /* Get the TIMx SMCR register value */
      tmpsmcr = TIMx->SMCR;
    
      /* Reset the TS Bits */
      tmpsmcr &= (uint16_t)~TIM_SMCR_TS;
    
      /* Set the Input Trigger source */
      tmpsmcr |= TIM_InputTriggerSource;
    
      /* Write to TIMx SMCR */
      TIMx->SMCR = tmpsmcr;
    }
    
    /**
      * @brief  Selects the TIMx Trigger Output Mode.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 6, 7 or 8 to select the TIM peripheral.
      *     
      * @param  TIM_TRGOSource: specifies the Trigger Output source.
      *   This parameter can be one of the following values:
      *
      *  - For all TIMx
      *            @arg TIM_TRGOSource_Reset:  The UG bit in the TIM_EGR register is used as the trigger output(TRGO)
      *            @arg TIM_TRGOSource_Enable: The Counter Enable CEN is used as the trigger output(TRGO)
      *            @arg TIM_TRGOSource_Update: The update event is selected as the trigger output(TRGO)
      *
      *  - For all TIMx except TIM6 and TIM7
      *            @arg TIM_TRGOSource_OC1: The trigger output sends a positive pulse when the CC1IF flag
      *                                     is to be set, as soon as a capture or compare match occurs(TRGO)
      *            @arg TIM_TRGOSource_OC1Ref: OC1REF signal is used as the trigger output(TRGO)
      *            @arg TIM_TRGOSource_OC2Ref: OC2REF signal is used as the trigger output(TRGO)
      *            @arg TIM_TRGOSource_OC3Ref: OC3REF signal is used as the trigger output(TRGO)
      *            @arg TIM_TRGOSource_OC4Ref: OC4REF signal is used as the trigger output(TRGO)
      *
      * @retval None
      */
    void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST5_PERIPH(TIMx));
      assert_param(IS_TIM_TRGO_SOURCE(TIM_TRGOSource));
    
      /* Reset the MMS Bits */
      TIMx->CR2 &= (uint16_t)~TIM_CR2_MMS;
      /* Select the TRGO source */
      TIMx->CR2 |=  TIM_TRGOSource;
    }
    
    /**
      * @brief  Selects the TIMx Slave Mode.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM peripheral.
      * @param  TIM_SlaveMode: specifies the Timer Slave Mode.
      *          This parameter can be one of the following values:
      *            @arg TIM_SlaveMode_Reset: Rising edge of the selected trigger signal(TRGI) reinitialize 
      *                                      the counter and triggers an update of the registers
      *            @arg TIM_SlaveMode_Gated:     The counter clock is enabled when the trigger signal (TRGI) is high
      *            @arg TIM_SlaveMode_Trigger:   The counter starts at a rising edge of the trigger TRGI
      *            @arg TIM_SlaveMode_External1: Rising edges of the selected trigger (TRGI) clock the counter
      * @retval None
      */
    void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
      assert_param(IS_TIM_SLAVE_MODE(TIM_SlaveMode));
    
      /* Reset the SMS Bits */
      TIMx->SMCR &= (uint16_t)~TIM_SMCR_SMS;
    
      /* Select the Slave Mode */
      TIMx->SMCR |= TIM_SlaveMode;
    }
    
    /**
      * @brief  Sets or Resets the TIMx Master/Slave Mode.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM peripheral.
      * @param  TIM_MasterSlaveMode: specifies the Timer Master Slave Mode.
      *          This parameter can be one of the following values:
      *            @arg TIM_MasterSlaveMode_Enable: synchronization between the current timer
      *                                             and its slaves (through TRGO)
      *            @arg TIM_MasterSlaveMode_Disable: No action
      * @retval None
      */
    void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
      assert_param(IS_TIM_MSM_STATE(TIM_MasterSlaveMode));
    
      /* Reset the MSM Bit */
      TIMx->SMCR &= (uint16_t)~TIM_SMCR_MSM;
      
      /* Set or Reset the MSM Bit */
      TIMx->SMCR |= TIM_MasterSlaveMode;
    }
    
    /**
      * @brief  Configures the TIMx External Trigger (ETR).
      * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_ExtTRGPrescaler: The external Trigger Prescaler.
      *          This parameter can be one of the following values:
      *            @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
      *            @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
      *            @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
      *            @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
      * @param  TIM_ExtTRGPolarity: The external Trigger Polarity.
      *          This parameter can be one of the following values:
      *            @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
      *            @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
      * @param  ExtTRGFilter: External Trigger Filter.
      *          This parameter must be a value between 0x00 and 0x0F
      * @retval None
      */
    void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
                       uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
    {
      uint16_t tmpsmcr = 0;
    
      /* Check the parameters */
      assert_param(IS_TIM_LIST3_PERIPH(TIMx));
      assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
      assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
      assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
    
      tmpsmcr = TIMx->SMCR;
    
      /* Reset the ETR Bits */
      tmpsmcr &= SMCR_ETR_MASK;
    
      /* Set the Prescaler, the Filter value and the Polarity */
      tmpsmcr |= (uint16_t)(TIM_ExtTRGPrescaler | (uint16_t)(TIM_ExtTRGPolarity | (uint16_t)(ExtTRGFilter << (uint16_t)8)));
    
      /* Write to TIMx SMCR */
      TIMx->SMCR = tmpsmcr;
    }
    /**
      * @}
      */
    
    /** @defgroup TIM_Group8 Specific interface management functions
     *  @brief    Specific interface management functions 
     *
    @verbatim   
     ===============================================================================
                ##### Specific interface management functions #####
     ===============================================================================  
    
    @endverbatim
      * @{
      */
    
    /**
      * @brief  Configures the TIMx Encoder Interface.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @param  TIM_EncoderMode: specifies the TIMx Encoder Mode.
      *          This parameter can be one of the following values:
      *            @arg TIM_EncoderMode_TI1: Counter counts on TI1FP1 edge depending on TI2FP2 level.
      *            @arg TIM_EncoderMode_TI2: Counter counts on TI2FP2 edge depending on TI1FP1 level.
      *            @arg TIM_EncoderMode_TI12: Counter counts on both TI1FP1 and TI2FP2 edges depending
      *                                       on the level of the other input.
      * @param  TIM_IC1Polarity: specifies the IC1 Polarity
      *          This parameter can be one of the following values:
      *            @arg TIM_ICPolarity_Falling: IC Falling edge.
      *            @arg TIM_ICPolarity_Rising: IC Rising edge.
      * @param  TIM_IC2Polarity: specifies the IC2 Polarity
      *          This parameter can be one of the following values:
      *            @arg TIM_ICPolarity_Falling: IC Falling edge.
      *            @arg TIM_ICPolarity_Rising: IC Rising edge.
      * @retval None
      */
    void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode,
                                    uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity)
    {
      uint16_t tmpsmcr = 0;
      uint16_t tmpccmr1 = 0;
      uint16_t tmpccer = 0;
        
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
      assert_param(IS_TIM_ENCODER_MODE(TIM_EncoderMode));
      assert_param(IS_TIM_IC_POLARITY(TIM_IC1Polarity));
      assert_param(IS_TIM_IC_POLARITY(TIM_IC2Polarity));
    
      /* Get the TIMx SMCR register value */
      tmpsmcr = TIMx->SMCR;
    
      /* Get the TIMx CCMR1 register value */
      tmpccmr1 = TIMx->CCMR1;
    
      /* Get the TIMx CCER register value */
      tmpccer = TIMx->CCER;
    
      /* Set the encoder Mode */
      tmpsmcr &= (uint16_t)~TIM_SMCR_SMS;
      tmpsmcr |= TIM_EncoderMode;
    
      /* Select the Capture Compare 1 and the Capture Compare 2 as input */
      tmpccmr1 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR1_CC2S);
      tmpccmr1 |= TIM_CCMR1_CC1S_0 | TIM_CCMR1_CC2S_0;
    
      /* Set the TI1 and the TI2 Polarities */
      tmpccer &= ((uint16_t)~TIM_CCER_CC1P) & ((uint16_t)~TIM_CCER_CC2P);
      tmpccer |= (uint16_t)(TIM_IC1Polarity | (uint16_t)(TIM_IC2Polarity << (uint16_t)4));
    
      /* Write to TIMx SMCR */
      TIMx->SMCR = tmpsmcr;
    
      /* Write to TIMx CCMR1 */
      TIMx->CCMR1 = tmpccmr1;
    
      /* Write to TIMx CCER */
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Enables or disables the TIMx's Hall sensor interface.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @param  NewState: new state of the TIMx Hall sensor interface.
      *          This parameter can be: ENABLE or DISABLE.
      * @retval None
      */
    void TIM_SelectHallSensor(TIM_TypeDef* TIMx, FunctionalState NewState)
    {
      /* Check the parameters */
      assert_param(IS_TIM_LIST2_PERIPH(TIMx));
      assert_param(IS_FUNCTIONAL_STATE(NewState));
    
      if (NewState != DISABLE)
      {
        /* Set the TI1S Bit */
        TIMx->CR2 |= TIM_CR2_TI1S;
      }
      else
      {
        /* Reset the TI1S Bit */
        TIMx->CR2 &= (uint16_t)~TIM_CR2_TI1S;
      }
    }
    /**
      * @}
      */
    
    /** @defgroup TIM_Group9 Specific remapping management function
     *  @brief   Specific remapping management function
     *
    @verbatim   
     ===============================================================================
                  ##### Specific remapping management function #####
     ===============================================================================  
    
    @endverbatim
      * @{
      */
    
    /**
      * @brief  Configures the TIM2, TIM5 and TIM11 Remapping input capabilities.
      * @param  TIMx: where x can be 2, 5 or 11 to select the TIM peripheral.
      * @param  TIM_Remap: specifies the TIM input remapping source.
      *          This parameter can be one of the following values:
      *            @arg TIM2_TIM8_TRGO: TIM2 ITR1 input is connected to TIM8 Trigger output(default)
      *            @arg TIM2_ETH_PTP:   TIM2 ITR1 input is connected to ETH PTP trogger output.
      *            @arg TIM2_USBFS_SOF: TIM2 ITR1 input is connected to USB FS SOF. 
      *            @arg TIM2_USBHS_SOF: TIM2 ITR1 input is connected to USB HS SOF. 
      *            @arg TIM5_GPIO:      TIM5 CH4 input is connected to dedicated Timer pin(default)
      *            @arg TIM5_LSI:       TIM5 CH4 input is connected to LSI clock.
      *            @arg TIM5_LSE:       TIM5 CH4 input is connected to LSE clock.
      *            @arg TIM5_RTC:       TIM5 CH4 input is connected to RTC Output event.
      *            @arg TIM11_GPIO:     TIM11 CH4 input is connected to dedicated Timer pin(default) 
      *            @arg TIM11_HSE:      TIM11 CH4 input is connected to HSE_RTC clock
      *                                 (HSE divided by a programmable prescaler)  
      * @retval None
      */
    void TIM_RemapConfig(TIM_TypeDef* TIMx, uint16_t TIM_Remap)
    {
     /* Check the parameters */
      assert_param(IS_TIM_LIST6_PERIPH(TIMx));
      assert_param(IS_TIM_REMAP(TIM_Remap));
    
      /* Set the Timer remapping configuration */
      TIMx->OR =  TIM_Remap;
    }
    /**
      * @}
      */
    
    /**
      * @brief  Configure the TI1 as Input.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13 or 14 
      *         to select the TIM peripheral.
      * @param  TIM_ICPolarity : The Input Polarity.
      *          This parameter can be one of the following values:
      *            @arg TIM_ICPolarity_Rising
      *            @arg TIM_ICPolarity_Falling
      *            @arg TIM_ICPolarity_BothEdge  
      * @param  TIM_ICSelection: specifies the input to be used.
      *          This parameter can be one of the following values:
      *            @arg TIM_ICSelection_DirectTI: TIM Input 1 is selected to be connected to IC1.
      *            @arg TIM_ICSelection_IndirectTI: TIM Input 1 is selected to be connected to IC2.
      *            @arg TIM_ICSelection_TRC: TIM Input 1 is selected to be connected to TRC.
      * @param  TIM_ICFilter: Specifies the Input Capture Filter.
      *          This parameter must be a value between 0x00 and 0x0F.
      * @retval None
      */
    static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                           uint16_t TIM_ICFilter)
    {
      uint16_t tmpccmr1 = 0, tmpccer = 0;
    
      /* Disable the Channel 1: Reset the CC1E Bit */
      TIMx->CCER &= (uint16_t)~TIM_CCER_CC1E;
      tmpccmr1 = TIMx->CCMR1;
      tmpccer = TIMx->CCER;
    
      /* Select the Input and set the filter */
      tmpccmr1 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR1_IC1F);
      tmpccmr1 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4));
    
      /* Select the Polarity and set the CC1E Bit */
      tmpccer &= (uint16_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
      tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC1E);
    
      /* Write to TIMx CCMR1 and CCER registers */
      TIMx->CCMR1 = tmpccmr1;
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Configure the TI2 as Input.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
      *         peripheral.
      * @param  TIM_ICPolarity : The Input Polarity.
      *          This parameter can be one of the following values:
      *            @arg TIM_ICPolarity_Rising
      *            @arg TIM_ICPolarity_Falling
      *            @arg TIM_ICPolarity_BothEdge   
      * @param  TIM_ICSelection: specifies the input to be used.
      *          This parameter can be one of the following values:
      *            @arg TIM_ICSelection_DirectTI: TIM Input 2 is selected to be connected to IC2.
      *            @arg TIM_ICSelection_IndirectTI: TIM Input 2 is selected to be connected to IC1.
      *            @arg TIM_ICSelection_TRC: TIM Input 2 is selected to be connected to TRC.
      * @param  TIM_ICFilter: Specifies the Input Capture Filter.
      *          This parameter must be a value between 0x00 and 0x0F.
      * @retval None
      */
    static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                           uint16_t TIM_ICFilter)
    {
      uint16_t tmpccmr1 = 0, tmpccer = 0, tmp = 0;
    
      /* Disable the Channel 2: Reset the CC2E Bit */
      TIMx->CCER &= (uint16_t)~TIM_CCER_CC2E;
      tmpccmr1 = TIMx->CCMR1;
      tmpccer = TIMx->CCER;
      tmp = (uint16_t)(TIM_ICPolarity << 4);
    
      /* Select the Input and set the filter */
      tmpccmr1 &= ((uint16_t)~TIM_CCMR1_CC2S) & ((uint16_t)~TIM_CCMR1_IC2F);
      tmpccmr1 |= (uint16_t)(TIM_ICFilter << 12);
      tmpccmr1 |= (uint16_t)(TIM_ICSelection << 8);
    
      /* Select the Polarity and set the CC2E Bit */
      tmpccer &= (uint16_t)~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
      tmpccer |=  (uint16_t)(tmp | (uint16_t)TIM_CCER_CC2E);
    
      /* Write to TIMx CCMR1 and CCER registers */
      TIMx->CCMR1 = tmpccmr1 ;
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Configure the TI3 as Input.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_ICPolarity : The Input Polarity.
      *          This parameter can be one of the following values:
      *            @arg TIM_ICPolarity_Rising
      *            @arg TIM_ICPolarity_Falling
      *            @arg TIM_ICPolarity_BothEdge         
      * @param  TIM_ICSelection: specifies the input to be used.
      *          This parameter can be one of the following values:
      *            @arg TIM_ICSelection_DirectTI: TIM Input 3 is selected to be connected to IC3.
      *            @arg TIM_ICSelection_IndirectTI: TIM Input 3 is selected to be connected to IC4.
      *            @arg TIM_ICSelection_TRC: TIM Input 3 is selected to be connected to TRC.
      * @param  TIM_ICFilter: Specifies the Input Capture Filter.
      *          This parameter must be a value between 0x00 and 0x0F.
      * @retval None
      */
    static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                           uint16_t TIM_ICFilter)
    {
      uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;
    
      /* Disable the Channel 3: Reset the CC3E Bit */
      TIMx->CCER &= (uint16_t)~TIM_CCER_CC3E;
      tmpccmr2 = TIMx->CCMR2;
      tmpccer = TIMx->CCER;
      tmp = (uint16_t)(TIM_ICPolarity << 8);
    
      /* Select the Input and set the filter */
      tmpccmr2 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR2_IC3F);
      tmpccmr2 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4));
    
      /* Select the Polarity and set the CC3E Bit */
      tmpccer &= (uint16_t)~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
      tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC3E);
    
      /* Write to TIMx CCMR2 and CCER registers */
      TIMx->CCMR2 = tmpccmr2;
      TIMx->CCER = tmpccer;
    }
    
    /**
      * @brief  Configure the TI4 as Input.
      * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
      * @param  TIM_ICPolarity : The Input Polarity.
      *          This parameter can be one of the following values:
      *            @arg TIM_ICPolarity_Rising
      *            @arg TIM_ICPolarity_Falling
      *            @arg TIM_ICPolarity_BothEdge     
      * @param  TIM_ICSelection: specifies the input to be used.
      *          This parameter can be one of the following values:
      *            @arg TIM_ICSelection_DirectTI: TIM Input 4 is selected to be connected to IC4.
      *            @arg TIM_ICSelection_IndirectTI: TIM Input 4 is selected to be connected to IC3.
      *            @arg TIM_ICSelection_TRC: TIM Input 4 is selected to be connected to TRC.
      * @param  TIM_ICFilter: Specifies the Input Capture Filter.
      *          This parameter must be a value between 0x00 and 0x0F.
      * @retval None
      */
    static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                           uint16_t TIM_ICFilter)
    {
      uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;
    
      /* Disable the Channel 4: Reset the CC4E Bit */
      TIMx->CCER &= (uint16_t)~TIM_CCER_CC4E;
      tmpccmr2 = TIMx->CCMR2;
      tmpccer = TIMx->CCER;
      tmp = (uint16_t)(TIM_ICPolarity << 12);
    
      /* Select the Input and set the filter */
      tmpccmr2 &= ((uint16_t)~TIM_CCMR1_CC2S) & ((uint16_t)~TIM_CCMR1_IC2F);
      tmpccmr2 |= (uint16_t)(TIM_ICSelection << 8);
      tmpccmr2 |= (uint16_t)(TIM_ICFilter << 12);
    
      /* Select the Polarity and set the CC4E Bit */
      tmpccer &= (uint16_t)~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
      tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC4E);
    
      /* Write to TIMx CCMR2 and CCER registers */
      TIMx->CCMR2 = tmpccmr2;
      TIMx->CCER = tmpccer ;
    }
    
    /**
      * @}
      */
    
    /**
      * @}
      */
    
    /**
      * @}
      */
    
    /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/