Skip to content
Snippets Groups Projects
Select Git revision
  • dualcore
  • ch3/leds
  • wip-bootstrap default
  • ch3/time
  • master
5 results

mpthreadport.c

Blame
  • mpthreadport.c 6.76 KiB
    /*
     * This file is part of the MicroPython project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2016 Damien P. George on behalf of Pycom Ltd
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <stdio.h>
    #include <stdlib.h>
    #include <errno.h>
    
    #include "py/mpstate.h"
    #include "py/runtime.h"
    #include "py/mpthread.h"
    #include "py/gc.h"
    
    #if MICROPY_PY_THREAD
    
    #include <signal.h>
    #include <sched.h>
    
    // this structure forms a linked list, one node per active thread
    typedef struct _thread_t {
        pthread_t id;           // system id of thread
        int ready;              // whether the thread is ready and running
        void *arg;              // thread Python args, a GC root pointer
        struct _thread_t *next;
    } thread_t;
    
    STATIC pthread_key_t tls_key;
    
    // the mutex controls access to the linked list
    STATIC pthread_mutex_t thread_mutex = PTHREAD_MUTEX_INITIALIZER;
    STATIC thread_t *thread;
    
    // this is used to synchronise the signal handler of the thread
    // it's needed because we can't use any pthread calls in a signal handler
    STATIC volatile int thread_signal_done;
    
    // this signal handler is used to scan the regs and stack of a thread
    STATIC void mp_thread_gc(int signo, siginfo_t *info, void *context) {
        (void)info; // unused
        (void)context; // unused
        if (signo == SIGUSR1) {
            void gc_collect_regs_and_stack(void);
            gc_collect_regs_and_stack();
            // We have access to the context (regs, stack) of the thread but it seems
            // that we don't need the extra information, enough is captured by the
            // gc_collect_regs_and_stack function above
            //gc_collect_root((void**)context, sizeof(ucontext_t) / sizeof(uintptr_t));
            thread_signal_done = 1;
        }
    }
    
    void mp_thread_init(void) {
        pthread_key_create(&tls_key, NULL);
        pthread_setspecific(tls_key, &mp_state_ctx.thread);
    
        // create first entry in linked list of all threads
        thread = malloc(sizeof(thread_t));
        thread->id = pthread_self();
        thread->ready = 1;
        thread->arg = NULL;
        thread->next = NULL;
    
        // enable signal handler for garbage collection
        struct sigaction sa;
        sa.sa_flags = SA_SIGINFO;
        sa.sa_sigaction = mp_thread_gc;
        sigemptyset(&sa.sa_mask);
        sigaction(SIGUSR1, &sa, NULL);
    }
    
    // This function scans all pointers that are external to the current thread.
    // It does this by signalling all other threads and getting them to scan their
    // own registers and stack.  Note that there may still be some edge cases left
    // with race conditions and root-pointer scanning: a given thread may manipulate
    // the global root pointers (in mp_state_ctx) while another thread is doing a
    // garbage collection and tracing these pointers.
    void mp_thread_gc_others(void) {
        pthread_mutex_lock(&thread_mutex);
        for (thread_t *th = thread; th != NULL; th = th->next) {
            gc_collect_root(&th->arg, 1);
            if (th->id == pthread_self()) {
                continue;
            }
            if (!th->ready) {
                continue;
            }
            thread_signal_done = 0;
            pthread_kill(th->id, SIGUSR1);
            while (thread_signal_done == 0) {
                sched_yield();
            }
        }
        pthread_mutex_unlock(&thread_mutex);
    }
    
    mp_state_thread_t *mp_thread_get_state(void) {
        return (mp_state_thread_t*)pthread_getspecific(tls_key);
    }
    
    void mp_thread_set_state(void *state) {
        pthread_setspecific(tls_key, state);
    }
    
    void mp_thread_start(void) {
        pthread_mutex_lock(&thread_mutex);
        for (thread_t *th = thread; th != NULL; th = th->next) {
            if (th->id == pthread_self()) {
                th->ready = 1;
                break;
            }
        }
        pthread_mutex_unlock(&thread_mutex);
    }
    
    void mp_thread_create(void *(*entry)(void*), void *arg, size_t *stack_size) {
        // default stack size is 8k machine-words
        if (*stack_size == 0) {
            *stack_size = 8192 * BYTES_PER_WORD;
        }
    
        // minimum stack size is set by pthreads
        if (*stack_size < PTHREAD_STACK_MIN) {
            *stack_size = PTHREAD_STACK_MIN;
        }
    
        // set thread attributes
        pthread_attr_t attr;
        int ret = pthread_attr_init(&attr);
        if (ret != 0) {
            goto er;
        }
        ret = pthread_attr_setstacksize(&attr, *stack_size);
        if (ret != 0) {
            goto er;
        }
    
        pthread_mutex_lock(&thread_mutex);
    
        // create thread
        pthread_t id;
        ret = pthread_create(&id, &attr, entry, arg);
        if (ret != 0) {
            pthread_mutex_unlock(&thread_mutex);
            goto er;
        }
    
        // adjust stack_size to provide room to recover from hitting the limit
        // this value seems to be about right for both 32-bit and 64-bit builds
        *stack_size -= 8192;
    
        // add thread to linked list of all threads
        thread_t *th = malloc(sizeof(thread_t));
        th->id = id;
        th->ready = 0;
        th->arg = arg;
        th->next = thread;
        thread = th;
    
        pthread_mutex_unlock(&thread_mutex);
    
        return;
    
    er:
        mp_raise_OSError(ret);
    }
    
    void mp_thread_finish(void) {
        pthread_mutex_lock(&thread_mutex);
        // TODO unlink from list
        for (thread_t *th = thread; th != NULL; th = th->next) {
            if (th->id == pthread_self()) {
                th->ready = 0;
                break;
            }
        }
        pthread_mutex_unlock(&thread_mutex);
    }
    
    void mp_thread_mutex_init(mp_thread_mutex_t *mutex) {
        pthread_mutex_init(mutex, NULL);
    }
    
    int mp_thread_mutex_lock(mp_thread_mutex_t *mutex, int wait) {
        int ret;
        if (wait) {
            ret = pthread_mutex_lock(mutex);
            if (ret == 0) {
                return 1;
            }
        } else {
            ret = pthread_mutex_trylock(mutex);
            if (ret == 0) {
                return 1;
            } else if (ret == EBUSY) {
                return 0;
            }
        }
        return -ret;
    }
    
    void mp_thread_mutex_unlock(mp_thread_mutex_t *mutex) {
        pthread_mutex_unlock(mutex);
        // TODO check return value
    }
    
    #endif // MICROPY_PY_THREAD