Skip to content
Snippets Groups Projects
Select Git revision
  • 5db55e63f3e7a5beda732c241693e37e3a7b099f
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

modutimeq.c

Blame
  • modutimeq.c 7.71 KiB
    /*
     * This file is part of the MicroPython project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2014 Damien P. George
     * Copyright (c) 2016-2017 Paul Sokolovsky
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <string.h>
    
    #include "py/nlr.h"
    #include "py/objlist.h"
    #include "py/runtime0.h"
    #include "py/runtime.h"
    #include "py/smallint.h"
    
    #if MICROPY_PY_UTIMEQ
    
    #define MODULO MICROPY_PY_UTIME_TICKS_PERIOD
    
    #define DEBUG 0
    
    // the algorithm here is modelled on CPython's heapq.py
    
    struct qentry {
        mp_uint_t time;
        mp_uint_t id;
        mp_obj_t callback;
        mp_obj_t args;
    };
    
    typedef struct _mp_obj_utimeq_t {
        mp_obj_base_t base;
        mp_uint_t alloc;
        mp_uint_t len;
        struct qentry items[];
    } mp_obj_utimeq_t;
    
    STATIC mp_uint_t utimeq_id;
    
    STATIC mp_obj_utimeq_t *get_heap(mp_obj_t heap_in) {
        return MP_OBJ_TO_PTR(heap_in);
    }
    
    STATIC bool time_less_than(struct qentry *item, struct qentry *parent) {
        mp_uint_t item_tm = item->time;
        mp_uint_t parent_tm = parent->time;
        mp_uint_t res = parent_tm - item_tm;
        if (res == 0) {
            // TODO: This actually should use the same "ring" logic
            // as for time, to avoid artifacts when id's overflow.
            return item->id < parent->id;
        }
        if ((mp_int_t)res < 0) {
            res += MODULO;
        }
        return res && res < (MODULO / 2);
    }
    
    STATIC mp_obj_t utimeq_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
        mp_arg_check_num(n_args, n_kw, 1, 1, false);
        mp_uint_t alloc = mp_obj_get_int(args[0]);
        mp_obj_utimeq_t *o = m_new_obj_var(mp_obj_utimeq_t, struct qentry, alloc);
        o->base.type = type;
        memset(o->items, 0, sizeof(*o->items) * alloc);
        o->alloc = alloc;
        o->len = 0;
        return MP_OBJ_FROM_PTR(o);
    }
    
    STATIC void heap_siftdown(mp_obj_utimeq_t *heap, mp_uint_t start_pos, mp_uint_t pos) {
        struct qentry item = heap->items[pos];
        while (pos > start_pos) {
            mp_uint_t parent_pos = (pos - 1) >> 1;
            struct qentry *parent = &heap->items[parent_pos];
            bool lessthan = time_less_than(&item, parent);
            if (lessthan) {
                heap->items[pos] = *parent;
                pos = parent_pos;
            } else {
                break;
            }
        }
        heap->items[pos] = item;
    }
    
    STATIC void heap_siftup(mp_obj_utimeq_t *heap, mp_uint_t pos) {
        mp_uint_t start_pos = pos;
        mp_uint_t end_pos = heap->len;
        struct qentry item = heap->items[pos];
        for (mp_uint_t child_pos = 2 * pos + 1; child_pos < end_pos; child_pos = 2 * pos + 1) {
            // choose right child if it's <= left child
            if (child_pos + 1 < end_pos) {
                bool lessthan = time_less_than(&heap->items[child_pos], &heap->items[child_pos + 1]);
                if (!lessthan) {
                    child_pos += 1;
                }
            }
            // bubble up the smaller child
            heap->items[pos] = heap->items[child_pos];
            pos = child_pos;
        }
        heap->items[pos] = item;
        heap_siftdown(heap, start_pos, pos);
    }
    
    STATIC mp_obj_t mod_utimeq_heappush(size_t n_args, const mp_obj_t *args) {
        (void)n_args;
        mp_obj_t heap_in = args[0];
        mp_obj_utimeq_t *heap = get_heap(heap_in);
        if (heap->len == heap->alloc) {
            mp_raise_msg(&mp_type_IndexError, "queue overflow");
        }
        mp_uint_t l = heap->len;
        heap->items[l].time = MP_OBJ_SMALL_INT_VALUE(args[1]);
        heap->items[l].id = utimeq_id++;
        heap->items[l].callback = args[2];
        heap->items[l].args = args[3];
        heap_siftdown(heap, 0, heap->len);
        heap->len++;
        return mp_const_none;
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mod_utimeq_heappush_obj, 4, 4, mod_utimeq_heappush);
    
    STATIC mp_obj_t mod_utimeq_heappop(mp_obj_t heap_in, mp_obj_t list_ref) {
        mp_obj_utimeq_t *heap = get_heap(heap_in);
        if (heap->len == 0) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_IndexError, "empty heap"));
        }
        mp_obj_list_t *ret = MP_OBJ_TO_PTR(list_ref);
        if (!MP_OBJ_IS_TYPE(list_ref, &mp_type_list) || ret->len < 3) {
            mp_raise_TypeError("");
        }
    
        struct qentry *item = &heap->items[0];
        ret->items[0] = MP_OBJ_NEW_SMALL_INT(item->time);
        ret->items[1] = item->callback;
        ret->items[2] = item->args;
        heap->len -= 1;
        heap->items[0] = heap->items[heap->len];
        heap->items[heap->len].callback = MP_OBJ_NULL; // so we don't retain a pointer
        heap->items[heap->len].args = MP_OBJ_NULL;
        if (heap->len) {
            heap_siftup(heap, 0);
        }
        return mp_const_none;
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_2(mod_utimeq_heappop_obj, mod_utimeq_heappop);
    
    STATIC mp_obj_t mod_utimeq_peektime(mp_obj_t heap_in) {
        mp_obj_utimeq_t *heap = get_heap(heap_in);
        if (heap->len == 0) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_IndexError, "empty heap"));
        }
    
        struct qentry *item = &heap->items[0];
        return MP_OBJ_NEW_SMALL_INT(item->time);
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_utimeq_peektime_obj, mod_utimeq_peektime);
    
    #if DEBUG
    STATIC mp_obj_t mod_utimeq_dump(mp_obj_t heap_in) {
        mp_obj_utimeq_t *heap = get_heap(heap_in);
        for (int i = 0; i < heap->len; i++) {
            printf(UINT_FMT "\t%p\t%p\n", heap->items[i].time,
                MP_OBJ_TO_PTR(heap->items[i].callback), MP_OBJ_TO_PTR(heap->items[i].args));
        }
        return mp_const_none;
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_utimeq_dump_obj, mod_utimeq_dump);
    #endif
    
    STATIC mp_obj_t utimeq_unary_op(mp_uint_t op, mp_obj_t self_in) {
        mp_obj_utimeq_t *self = MP_OBJ_TO_PTR(self_in);
        switch (op) {
            case MP_UNARY_OP_BOOL: return mp_obj_new_bool(self->len != 0);
            case MP_UNARY_OP_LEN: return MP_OBJ_NEW_SMALL_INT(self->len);
            default: return MP_OBJ_NULL; // op not supported
        }
    }
    
    STATIC const mp_rom_map_elem_t utimeq_locals_dict_table[] = {
        { MP_ROM_QSTR(MP_QSTR_push), MP_ROM_PTR(&mod_utimeq_heappush_obj) },
        { MP_ROM_QSTR(MP_QSTR_pop), MP_ROM_PTR(&mod_utimeq_heappop_obj) },
        { MP_ROM_QSTR(MP_QSTR_peektime), MP_ROM_PTR(&mod_utimeq_peektime_obj) },
        #if DEBUG
        { MP_ROM_QSTR(MP_QSTR_dump), MP_ROM_PTR(&mod_utimeq_dump_obj) },
        #endif
    };
    
    STATIC MP_DEFINE_CONST_DICT(utimeq_locals_dict, utimeq_locals_dict_table);
    
    STATIC const mp_obj_type_t utimeq_type = {
        { &mp_type_type },
        .name = MP_QSTR_utimeq,
        .make_new = utimeq_make_new,
        .unary_op = utimeq_unary_op,
        .locals_dict = (void*)&utimeq_locals_dict,
    };
    
    STATIC const mp_rom_map_elem_t mp_module_utimeq_globals_table[] = {
        { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_utimeq) },
        { MP_ROM_QSTR(MP_QSTR_utimeq), MP_ROM_PTR(&utimeq_type) },
    };
    
    STATIC MP_DEFINE_CONST_DICT(mp_module_utimeq_globals, mp_module_utimeq_globals_table);
    
    const mp_obj_module_t mp_module_utimeq = {
        .base = { &mp_type_module },
        .globals = (mp_obj_dict_t*)&mp_module_utimeq_globals,
    };
    
    #endif //MICROPY_PY_UTIMEQ