Select Git revision
-
Damien George authored
The GC works with concrete pointers and so the types should reflect this.
Damien George authoredThe GC works with concrete pointers and so the types should reflect this.
bhi.c 9.61 KiB
#include <stdio.h>
#include <string.h>
#include "gpio.h"
#include "bhy_uc_driver.h"
#include "bhy.h"
#include "pmic.h"
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
#include "queue.h"
#include "api/interrupt-sender.h"
#include "epicardium.h"
#include "modules/log.h"
#include "modules/modules.h"
#include "modules/stream.h"
/* Ticks to wait when trying to acquire lock */
#define LOCK_WAIT pdMS_TO_TICKS(BHI160_MUTEX_WAIT_MS)
/* BHI160 Firmware Blob. Contents are defined in libcard10. */
extern uint8_t bhy1_fw[];
/* Interrupt Pin */
static const gpio_cfg_t bhi160_interrupt_pin = {
PORT_0, PIN_13, GPIO_FUNC_IN, GPIO_PAD_PULL_UP
};
/* Axis remapping matrices */
static int8_t bhi160_mapping_matrix[3 * 3] = { 0, -1, 0, 1, 0, 0, 0, 0, 1 };
static int8_t bmm150_mapping_matrix[3 * 3] = { -1, 0, 0, 0, 1, 0, 0, 0, -1 };
/*
* From the official docs:
*
* The sic matrix should be calculated for customer platform by logging
* uncalibrated magnetometer data. The sic matrix here is only an example
* array (identity matrix). Customer should generate their own matrix. This
* affects magnetometer fusion performance.
*
* TODO: Get data for card10
*/
/* clang-format off */
static float bhi160_sic_array[3 * 3] = { 1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0 };
/* clang-format on */
/* BHI160 Fifo */
static uint8_t bhi160_fifo[BHI160_FIFO_SIZE];
static size_t start_index = 0;
/* BHI160 Task ID */
static TaskHandle_t bhi160_task_id = NULL;
/* BHI160 Mutex */
static StaticSemaphore_t bhi160_mutex_data;
static SemaphoreHandle_t bhi160_mutex = NULL;
/* Streams */
static struct stream_info bhi160_streams[10];
/* -- Utilities -------------------------------------------------------- {{{ */
/*
* Retrieve the data size for a sensor. This value is needed for the creation
* of the sensor's sample queue.
*/
static size_t bhi160_lookup_data_size(enum bhi160_sensor_type type)
{
switch (type) {
case BHI160_ACCELEROMETER:
case BHI160_MAGNETOMETER:
case BHI160_ORIENTATION:
return sizeof(struct bhi160_data_vector);
default:
return 0;
}
}
/*
* Map a sensor type to the virtual sensor ID used by BHy1.
*/
static bhy_virtual_sensor_t bhi160_lookup_vs_id(enum bhi160_sensor_type type)
{
switch (type) {
case BHI160_ACCELEROMETER:
return VS_ID_ACCELEROMETER;
default:
return -1;
}
}
/*
* Map a sensor type to its stream descriptor.
*/
static int bhi160_lookup_sd(enum bhi160_sensor_type type)
{
switch (type) {
case BHI160_ACCELEROMETER:
return SD_BHI160_ACCELEROMETER;
default:
return -1;
}
}
/* }}} */
/* -- API -------------------------------------------------------------- {{{ */
int epic_bhi160_enable_sensor(
enum bhi160_sensor_type sensor_type,
struct bhi160_sensor_config *config
) {
bhy_virtual_sensor_t vs_id = bhi160_lookup_vs_id(sensor_type);
if (vs_id < 0) {
return -ENODEV;
}
if (i2c_lock() == 0 &&
xSemaphoreTake(bhi160_mutex, LOCK_WAIT) == pdTRUE) {
struct stream_info *stream = &bhi160_streams[sensor_type];
stream->item_size = bhi160_lookup_data_size(sensor_type);
/* TODO: Sanity check length */
stream->queue = xQueueCreate(
config->sample_buffer_len, stream->item_size
);
if (stream->queue == NULL) {
xSemaphoreGive(bhi160_mutex);
return -ENOMEM;
}
stream_register(bhi160_lookup_sd(sensor_type), stream);
bhy_enable_virtual_sensor(
vs_id,
VS_WAKEUP,
config->sample_rate,
0,
VS_FLUSH_NONE,
0,
config->dynamic_range /* dynamic range is sensor dependent */
);
i2c_unlock();
xSemaphoreGive(bhi160_mutex);
} else {
return -EBUSY;
}
return 0;
}
int epic_bhi160_disable_sensor(enum bhi160_sensor_type sensor_type)
{
bhy_virtual_sensor_t vs_id = bhi160_lookup_vs_id(sensor_type);
if (vs_id < 0) {
return -ENODEV;
}
if (i2c_lock() == 0 &&
xSemaphoreTake(bhi160_mutex, LOCK_WAIT) == pdTRUE) {
struct stream_info *stream = &bhi160_streams[sensor_type];
stream_deregister(bhi160_lookup_sd(sensor_type), stream);
vQueueDelete(stream->queue);
stream->queue = NULL;
bhy_disable_virtual_sensor(vs_id, VS_WAKEUP);
i2c_unlock();
xSemaphoreGive(bhi160_mutex);
} else {
return -EBUSY;
}
return 0;
}
/* }}} */
/* -- Driver ----------------------------------------------------------- {{{ */
/*
* Handle a single packet from the FIFO. For most sensors this means pushing
* the sample into its sample queue.
*/
static void
bhi160_handle_packet(bhy_data_type_t data_type, bhy_data_generic_t *sensor_data)
{
uint8_t sensor_id = sensor_data->data_vector.sensor_id;
struct bhi160_data_vector data_vector;
/*
* Timestamp of the next samples, counting at 32 kHz.
* Currently unused.
*/
static uint32_t timestamp = 0;
switch (sensor_id) {
case VS_ID_TIMESTAMP_MSW:
case VS_ID_TIMESTAMP_MSW_WAKEUP:
MXC_ASSERT(data_type == BHY_DATA_TYPE_SCALAR_U16);
timestamp = sensor_data->data_scalar_u16.data << 16;
break;
case VS_ID_TIMESTAMP_LSW:
case VS_ID_TIMESTAMP_LSW_WAKEUP:
MXC_ASSERT(data_type == BHY_DATA_TYPE_SCALAR_U16);
timestamp = (timestamp & 0xFFFF0000) |
sensor_data->data_scalar_u16.data;
break;
case VS_ID_ACCELEROMETER:
case VS_ID_ACCELEROMETER_WAKEUP:
MXC_ASSERT(data_type == BHY_DATA_TYPE_VECTOR);
if (bhi160_streams[BHI160_ACCELEROMETER].queue == NULL) {
break;
}
data_vector.x = sensor_data->data_vector.x;
data_vector.y = sensor_data->data_vector.y;
data_vector.z = sensor_data->data_vector.z;
xQueueSend(
bhi160_streams[BHI160_ACCELEROMETER].queue,
&data_vector,
BHI160_MUTEX_WAIT_MS
);
if (sensor_id == VS_ID_ACCELEROMETER_WAKEUP) {
api_interrupt_trigger(EPIC_INT_BHI160_ACCELEROMETER);
}
break;
default:
break;
}
}
/*
* Fetch all data available from BHI160's FIFO buffer and handle all packets
* contained in it.
*/
static int bhi160_fetch_fifo(void)
{
/*
* Warning: The code from the BHy1 docs has some issues. This
* implementation looks similar, but has a few important differences.
* You'll probably be best of leaving it as it is ...
*/
int ret = BHY_SUCCESS;
/* Number of bytes left in BHI160's FIFO buffer */
uint16_t bytes_left_in_fifo = 1;
if (i2c_lock() < 0 ||
xSemaphoreTake(bhi160_mutex, LOCK_WAIT) != pdTRUE) {
return -EBUSY;
}
while (bytes_left_in_fifo) {
/* Fill local FIFO buffer with as many bytes as possible */
uint16_t bytes_read;
bhy_read_fifo(
&bhi160_fifo[start_index],
BHI160_FIFO_SIZE - start_index,
&bytes_read,
&bytes_left_in_fifo
);
/* Add the bytes left from the last transfer on top */
bytes_read += start_index;
/* Handle all full packets received in this transfer */
uint8_t *fifo_ptr = bhi160_fifo;
uint16_t bytes_left = bytes_read;
while (bytes_left > 0) {
bhy_data_generic_t sensor_data;
bhy_data_type_t data_type;
ret = bhy_parse_next_fifo_packet(
&fifo_ptr,
&bytes_left,
&sensor_data,
&data_type
);
if (ret == BHY_SUCCESS) {
bhi160_handle_packet(data_type, &sensor_data);
} else {
break;
}
}
/* Shift the remaining bytes to the beginning */
for (int i = 0; i < bytes_left; i++) {
bhi160_fifo[i] =
bhi160_fifo[bytes_read - bytes_left + i];
}
start_index = bytes_left;
}
xSemaphoreGive(bhi160_mutex);
i2c_unlock();
return 0;
}
/*
* Callback for the BHI160 interrupt pin. This callback is called from the
* SDK's GPIO interrupt driver, in interrupt context.
*/
static void bhi160_interrupt_callback(void *_)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
if (bhi160_task_id != NULL) {
vTaskNotifyGiveFromISR(
bhi160_task_id, &xHigherPriorityTaskWoken
);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
}
/* }}} */
void vBhi160Task(void *pvParameters)
{
int ret;
bhi160_task_id = xTaskGetCurrentTaskHandle();
bhi160_mutex = xSemaphoreCreateMutexStatic(&bhi160_mutex_data);
/* Take Mutex during initialization, just in case */
if (i2c_lock() < 0 || xSemaphoreTake(bhi160_mutex, 0) != pdTRUE) {
LOG_CRIT("bhi160", "Failed to acquire BHI160/i2c mutex!");
vTaskDelay(portMAX_DELAY);
}
memset(bhi160_streams, 0x00, sizeof(bhi160_streams));
/* Install interrupt callback */
GPIO_Config(&bhi160_interrupt_pin);
GPIO_RegisterCallback(
&bhi160_interrupt_pin, bhi160_interrupt_callback, NULL
);
GPIO_IntConfig(&bhi160_interrupt_pin, GPIO_INT_EDGE, GPIO_INT_RISING);
GPIO_IntEnable(&bhi160_interrupt_pin);
NVIC_SetPriority(
(IRQn_Type)MXC_GPIO_GET_IRQ(bhi160_interrupt_pin.port), 2
);
NVIC_EnableIRQ((IRQn_Type)MXC_GPIO_GET_IRQ(bhi160_interrupt_pin.port));
/* Upload firmware */
ret = bhy_driver_init(bhy1_fw);
if (ret) {
LOG_CRIT("bhi160", "BHy1 init failed!");
vTaskDelay(portMAX_DELAY);
}
/* Wait for first interrupt */
ulTaskNotifyTake(pdTRUE, pdMS_TO_TICKS(100));
/* Remap axes to match card10 layout */
bhy_mapping_matrix_set(
PHYSICAL_SENSOR_INDEX_ACC, bhi160_mapping_matrix
);
bhy_mapping_matrix_set(
PHYSICAL_SENSOR_INDEX_MAG, bmm150_mapping_matrix
);
bhy_mapping_matrix_set(
PHYSICAL_SENSOR_INDEX_GYRO, bhi160_mapping_matrix
);
/* Set "SIC" matrix. TODO: Find out what this is about */
bhy_set_sic_matrix(bhi160_sic_array);
xSemaphoreGive(bhi160_mutex);
i2c_unlock();
/* ----------------------------------------- */
while (1) {
int ret = bhi160_fetch_fifo();
if (ret == -EBUSY) {
LOG_WARN("bhi160", "Could not acquire mutex for FIFO?");
continue;
} else if (ret < 0) {
LOG_ERR("bhi160", "Unknown error: %d", -ret);
}
/*
* Wait for interrupt. After two seconds, fetch FIFO anyway in
* case there are any diagnostics or errors.
*
* In the future, reads using epic_stream_read() might also
* trigger a FIFO fetch, from outside this task.
*/
ulTaskNotifyTake(pdTRUE, pdMS_TO_TICKS(2000));
}
}