Skip to content
Snippets Groups Projects
Select Git revision
  • 860ffb0a4365bba62cbd692392375df9fd4a72e7
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

objrange.c

Blame
  • objint.c 9.87 KiB
    #include <stdlib.h>
    #include <stdint.h>
    #include <assert.h>
    #include <string.h>
    
    #include "nlr.h"
    #include "misc.h"
    #include "mpconfig.h"
    #include "qstr.h"
    #include "obj.h"
    #include "parsenum.h"
    #include "mpz.h"
    #include "objint.h"
    #include "runtime0.h"
    #include "runtime.h"
    
    #if MICROPY_ENABLE_FLOAT
    #include <math.h>
    #endif
    
    // This dispatcher function is expected to be independent of the implementation of long int
    STATIC mp_obj_t mp_obj_int_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
        // TODO check n_kw == 0
    
        switch (n_args) {
            case 0:
                return MP_OBJ_NEW_SMALL_INT(0);
    
            case 1:
                if (MP_OBJ_IS_STR(args[0])) {
                    // a string, parse it
                    uint l;
                    const char *s = mp_obj_str_get_data(args[0], &l);
                    return mp_parse_num_integer(s, l, 0);
    #if MICROPY_ENABLE_FLOAT
                } else if (MP_OBJ_IS_TYPE(args[0], &mp_type_float)) {
                    return MP_OBJ_NEW_SMALL_INT((machine_int_t)(MICROPY_FLOAT_C_FUN(trunc)(mp_obj_float_get(args[0]))));
    #endif
                } else {
                    return MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(args[0]));
                }
    
            case 2:
            {
                // should be a string, parse it
                // TODO proper error checking of argument types
                uint l;
                const char *s = mp_obj_str_get_data(args[0], &l);
                return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]));
            }
    
            default:
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "int takes at most 2 arguments, %d given", n_args));
        }
    }
    
    void mp_obj_int_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
        // The size of this buffer is rather arbitrary. If it's not large
        // enough, a dynamic one will be allocated.
        char stack_buf[sizeof(machine_int_t) * 4];
        char *buf = stack_buf;
        int buf_size = sizeof(stack_buf);
        int fmt_size;
    
        char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0');
        print(env, "%s", str);
    
        if (buf != stack_buf) {
            m_free(buf, buf_size);
        }
    }
    
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
    typedef mp_longint_impl_t fmt_int_t;
    #else
    typedef mp_small_int_t fmt_int_t;
    #endif
    
    STATIC const uint log_base2_floor[] = {
        0,
        0, 1, 1, 2,
        2, 2, 2, 3,
        3, 3, 3, 3,
        3, 3, 3, 4,
        4, 4, 4, 4,
        4, 4, 4, 4,
        4, 4, 4, 4,
        4, 4, 4, 5
    };
    
    STATIC uint int_as_str_size_formatted(uint base, const char *prefix, char comma) {
        if (base < 2 || base > 32) {
            return 0;
        }
    
        uint num_digits = sizeof(fmt_int_t) * 8 / log_base2_floor[base] + 1;
        uint num_commas = comma ? num_digits / 3: 0;
        uint prefix_len = prefix ? strlen(prefix) : 0;
        return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte
    }
    
    // This routine expects you to pass in a buffer and size (in *buf and buf_size).
    // If, for some reason, this buffer is too small, then it will allocate a
    // buffer and return the allocated buffer and size in *buf and *buf_size. It
    // is the callers responsibility to free this allocated buffer.
    //
    // The resulting formatted string will be returned from this function and the
    // formatted size will be in *fmt_size.
    char *mp_obj_int_formatted(char **buf, int *buf_size, int *fmt_size, mp_obj_t self_in,
                               int base, const char *prefix, char base_char, char comma) {
        fmt_int_t num;
        if (MP_OBJ_IS_SMALL_INT(self_in)) {
            // A small int; get the integer value to format.
            num = mp_obj_get_int(self_in);
    #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
        } else if (MP_OBJ_IS_TYPE(self_in, &mp_type_int)) {
            // Not a small int.
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
            mp_obj_int_t *self = self_in;
            // Get the value to format; mp_obj_get_int truncates to machine_int_t.
            num = self->val;
    #else
            // Delegate to the implementation for the long int.
            return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma);
    #endif
    #endif
        } else {
            // Not an int.
            buf[0] = '\0';
            *fmt_size = 0;
            return *buf;
        }
    
        char sign = '\0';
        if (num < 0) {
            num = -num;
            sign = '-';
        }
    
        uint needed_size = int_as_str_size_formatted(base, prefix, comma);
        if (needed_size > *buf_size) {
            *buf = m_new(char, needed_size);
            *buf_size = needed_size;
        }
        char *str = *buf;
    
        char *b = str + needed_size;
        *(--b) = '\0';
        char *last_comma = b;
    
        if (num == 0) {
            *(--b) = '0';
        } else {
            do {
                int c = num % base;
                num /= base;
                if (c >= 10) {
                    c += base_char - 10;
                } else {
                    c += '0';
                }
                *(--b) = c;
                if (comma && num != 0 && b > str && (last_comma - b) == 3) {
                    *(--b) = comma;
                    last_comma = b;
                }
            }
            while (b > str && num != 0);
        }
        if (prefix) {
            size_t prefix_len = strlen(prefix);
            char *p = b - prefix_len;
            if (p > str) {
                b = p;
                while (*prefix) {
                    *p++ = *prefix++;
                }
            }
        }
        if (sign && b > str) {
            *(--b) = sign;
        }
        *fmt_size = *buf + needed_size - b - 1;
    
        return b;
    }
    
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
    
    bool mp_obj_int_is_positive(mp_obj_t self_in) {
        return mp_obj_get_int(self_in) >= 0;
    }
    
    // This is called for operations on SMALL_INT that are not handled by mp_unary_op
    mp_obj_t mp_obj_int_unary_op(int op, mp_obj_t o_in) {
        return MP_OBJ_NULL;
    }
    
    // This is called for operations on SMALL_INT that are not handled by mp_binary_op
    mp_obj_t mp_obj_int_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
        return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in);
    }
    
    // This is called only with strings whose value doesn't fit in SMALL_INT
    mp_obj_t mp_obj_new_int_from_long_str(const char *s) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "long int not supported in this build"));
        return mp_const_none;
    }
    
    // This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
    mp_obj_t mp_obj_new_int_from_ll(long long val) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
        return mp_const_none;
    }
    
    mp_obj_t mp_obj_new_int_from_uint(machine_uint_t value) {
        // SMALL_INT accepts only signed numbers, of one bit less size
        // then word size, which totals 2 bits less for unsigned numbers.
        if ((value & (WORD_MSBIT_HIGH | (WORD_MSBIT_HIGH >> 1))) == 0) {
            return MP_OBJ_NEW_SMALL_INT(value);
        }
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
        return mp_const_none;
    }
    
    mp_obj_t mp_obj_new_int(machine_int_t value) {
        if (MP_OBJ_FITS_SMALL_INT(value)) {
            return MP_OBJ_NEW_SMALL_INT(value);
        }
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
        return mp_const_none;
    }
    
    machine_int_t mp_obj_int_get(mp_obj_t self_in) {
        return MP_OBJ_SMALL_INT_VALUE(self_in);
    }
    
    machine_int_t mp_obj_int_get_checked(mp_obj_t self_in) {
        return MP_OBJ_SMALL_INT_VALUE(self_in);
    }
    
    #if MICROPY_ENABLE_FLOAT
    mp_float_t mp_obj_int_as_float(mp_obj_t self_in) {
        return MP_OBJ_SMALL_INT_VALUE(self_in);
    }
    #endif
    
    #endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
    
    // This dispatcher function is expected to be independent of the implementation of long int
    // It handles the extra cases for integer-like arithmetic
    mp_obj_t mp_obj_int_binary_op_extra_cases(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
        if (rhs_in == mp_const_false) {
            // false acts as 0
            return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0));
        } else if (rhs_in == mp_const_true) {
            // true acts as 0
            return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1));
        } else if (op == MP_BINARY_OP_MULTIPLY) {
            if (MP_OBJ_IS_STR(rhs_in) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_list)) {
                // multiply is commutative for these types, so delegate to them
                return mp_binary_op(op, rhs_in, lhs_in);
            }
        }
        return MP_OBJ_NULL;
    }
    
    STATIC mp_obj_t int_from_bytes(uint n_args, const mp_obj_t *args) {
        buffer_info_t bufinfo;
        mp_get_buffer_raise(args[0], &bufinfo);
    
        assert(bufinfo.len >= sizeof(machine_int_t));
        // TODO: Support long ints
        // TODO: Support byteorder param
        // TODO: Support signed param
        return mp_obj_new_int_from_uint(*(machine_uint_t*)bufinfo.buf);
    }
    
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_obj, 1, 3, int_from_bytes);
    
    STATIC mp_obj_t int_to_bytes(uint n_args, const mp_obj_t *args) {
        machine_int_t val = mp_obj_int_get_checked(args[0]);
    
        uint len = MP_OBJ_SMALL_INT_VALUE(args[1]);
        byte *data;
    
        // TODO: Support long ints
        // TODO: Support byteorder param
        // TODO: Support signed param
        mp_obj_t o = mp_obj_str_builder_start(&mp_type_bytes, len, &data);
        memset(data, 0, len);
        memcpy(data, &val, len < sizeof(machine_int_t) ? len : sizeof(machine_int_t));
        return mp_obj_str_builder_end(o);
    }
    
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_to_bytes_obj, 2, 4, int_to_bytes);
    
    STATIC const mp_map_elem_t int_locals_dict_table[] = {
        { MP_OBJ_NEW_QSTR(MP_QSTR_from_bytes), (mp_obj_t)&int_from_bytes_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_to_bytes), (mp_obj_t)&int_to_bytes_obj },
    };
    
    STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table);
    
    const mp_obj_type_t mp_type_int = {
        { &mp_type_type },
        .name = MP_QSTR_int,
        .print = mp_obj_int_print,
        .make_new = mp_obj_int_make_new,
        .unary_op = mp_obj_int_unary_op,
        .binary_op = mp_obj_int_binary_op,
        .locals_dict = (mp_obj_t)&int_locals_dict,
    };