Skip to content
Snippets Groups Projects
Select Git revision
  • 911089606376e60bd9451a85eb9558a23cde9039
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

scope.c

Blame
  • machine_rtc.c 9.38 KiB
    /*
     * This file is part of the Micro Python project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2015 Josef Gajdusek
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <stdio.h>
    #include <string.h>
    
    #include "py/nlr.h"
    #include "py/obj.h"
    #include "py/runtime.h"
    #include "timeutils.h"
    #include "user_interface.h"
    #include "modmachine.h"
    
    typedef struct _pyb_rtc_obj_t {
        mp_obj_base_t base;
    } pyb_rtc_obj_t;
    
    #define MEM_MAGIC           0x75507921
    #define MEM_DELTA_ADDR      64
    #define MEM_CAL_ADDR        (MEM_DELTA_ADDR + 2)
    #define MEM_USER_MAGIC_ADDR (MEM_CAL_ADDR + 1)
    #define MEM_USER_LEN_ADDR   (MEM_USER_MAGIC_ADDR + 1)
    #define MEM_USER_DATA_ADDR  (MEM_USER_LEN_ADDR + 1)
    #define MEM_USER_MAXLEN     (512 - (MEM_USER_DATA_ADDR - MEM_DELTA_ADDR) * 4)
    
    // singleton RTC object
    STATIC const pyb_rtc_obj_t pyb_rtc_obj = {{&pyb_rtc_type}};
    
    // ALARM0 state
    uint32_t pyb_rtc_alarm0_wake; // see MACHINE_WAKE_xxx constants
    uint64_t pyb_rtc_alarm0_expiry; // in microseconds
    
    // RTC overflow checking
    STATIC uint32_t rtc_last_ticks;
    
    void mp_hal_rtc_init(void) {
        uint32_t magic;
    
        system_rtc_mem_read(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic));
        if (magic != MEM_MAGIC) {
            magic = MEM_MAGIC;
            system_rtc_mem_write(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic));
            uint32_t cal = system_rtc_clock_cali_proc();
            int64_t delta = 0;
            system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal));
            system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
            uint32_t len = 0;
            system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len));
        }
        // system_get_rtc_time() is always 0 after reset/deepsleep
        rtc_last_ticks = system_get_rtc_time();
    
        // reset ALARM0 state
        pyb_rtc_alarm0_wake = 0;
        pyb_rtc_alarm0_expiry = 0;
    }
    
    STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
        // check arguments
        mp_arg_check_num(n_args, n_kw, 0, 0, false);
    
        // return constant object
        return (mp_obj_t)&pyb_rtc_obj;
    }
    
    void pyb_rtc_set_us_since_2000(uint64_t nowus) {
        uint32_t cal = system_rtc_clock_cali_proc();
        // Save RTC ticks for overflow detection.
        rtc_last_ticks = system_get_rtc_time();
        int64_t delta = nowus - (((uint64_t)rtc_last_ticks * cal) >> 12);
    
        // As the calibration value jitters quite a bit, to make the
        // clock at least somewhat practially usable, we need to store it
        system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal));
        system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
    };
    
    uint64_t pyb_rtc_get_us_since_2000() {
        uint32_t cal;
        int64_t delta;
        uint32_t rtc_ticks;
    
        system_rtc_mem_read(MEM_CAL_ADDR, &cal, sizeof(cal));
        system_rtc_mem_read(MEM_DELTA_ADDR, &delta, sizeof(delta));
    
        // ESP-SDK system_get_rtc_time() only returns uint32 and therefore
        // overflow about every 7:45h.  Thus, we have to check for
        // overflow and handle it.
        rtc_ticks = system_get_rtc_time();
        if (rtc_ticks < rtc_last_ticks) {
            // Adjust delta because of RTC overflow.
            delta += (uint64_t)cal << 20;
            system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
        }
        rtc_last_ticks = rtc_ticks;
    
        return (((uint64_t)rtc_ticks * cal) >> 12) + delta;
    };
    
    void rtc_prepare_deepsleep(uint64_t sleep_us) {
        // RTC time will reset at wake up. Let's be preared for this.
        int64_t delta = pyb_rtc_get_us_since_2000() + sleep_us;
        system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
    }
    
    STATIC mp_obj_t pyb_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) {
        if (n_args == 1) {
            // Get time
            uint64_t msecs = pyb_rtc_get_us_since_2000() / 1000;
    
            timeutils_struct_time_t tm;
            timeutils_seconds_since_2000_to_struct_time(msecs / 1000, &tm);
    
            mp_obj_t tuple[8] = {
                mp_obj_new_int(tm.tm_year),
                mp_obj_new_int(tm.tm_mon),
                mp_obj_new_int(tm.tm_mday),
                mp_obj_new_int(tm.tm_wday),
                mp_obj_new_int(tm.tm_hour),
                mp_obj_new_int(tm.tm_min),
                mp_obj_new_int(tm.tm_sec),
                mp_obj_new_int(msecs % 1000)
            };
    
            return mp_obj_new_tuple(8, tuple);
        } else {
            // Set time
            mp_obj_t *items;
            mp_obj_get_array_fixed_n(args[1], 8, &items);
    
            pyb_rtc_set_us_since_2000(
                ((uint64_t)timeutils_seconds_since_2000(
                    mp_obj_get_int(items[0]),
                    mp_obj_get_int(items[1]),
                    mp_obj_get_int(items[2]),
                    mp_obj_get_int(items[4]),
                    mp_obj_get_int(items[5]),
                    mp_obj_get_int(items[6])) * 1000 + mp_obj_get_int(items[7])) * 1000);
    
            return mp_const_none;
        }
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_datetime_obj, 1, 2, pyb_rtc_datetime);
    
    STATIC mp_obj_t pyb_rtc_memory(mp_uint_t n_args, const mp_obj_t *args) {
        uint8_t rtcram[MEM_USER_MAXLEN];
        uint32_t len;
    
        if (n_args == 1) {
            // read RTC memory
    
            system_rtc_mem_read(MEM_USER_LEN_ADDR, &len, sizeof(len));
            system_rtc_mem_read(MEM_USER_DATA_ADDR, rtcram, len + (4 - len % 4));
    
            return mp_obj_new_bytes(rtcram, len);
        } else {
            // write RTC memory
    
            mp_buffer_info_t bufinfo;
            mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);
    
            if (bufinfo.len > MEM_USER_MAXLEN) {
                nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
                    "buffer too long"));
            }
    
            len = bufinfo.len;
            system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len));
    
            int i = 0;
            for (; i < bufinfo.len; i++) {
                rtcram[i] = ((uint8_t *)bufinfo.buf)[i];
            }
    
            system_rtc_mem_write(MEM_USER_DATA_ADDR, rtcram, len + (4 - len % 4));
    
            return mp_const_none;
        }
    
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_memory_obj, 1, 2, pyb_rtc_memory);
    
    STATIC mp_obj_t pyb_rtc_alarm(mp_obj_t self_in, mp_obj_t alarm_id, mp_obj_t time_in) {
        (void)self_in; // unused
    
        // check we want alarm0
        if (mp_obj_get_int(alarm_id) != 0) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid alarm"));
        }
    
        // set expiry time (in microseconds)
        pyb_rtc_alarm0_expiry = pyb_rtc_get_us_since_2000() + (uint64_t)mp_obj_get_int(time_in) * 1000;
    
        return mp_const_none;
    
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_rtc_alarm_obj, pyb_rtc_alarm);
    
    STATIC mp_obj_t pyb_rtc_alarm_left(size_t n_args, const mp_obj_t *args) {
        // check we want alarm0
        if (n_args > 1 && mp_obj_get_int(args[1]) != 0) {
            mp_raise_ValueError("invalid alarm");
        }
    
        uint64_t now = pyb_rtc_get_us_since_2000();
        if (pyb_rtc_alarm0_expiry <= now) {
            return MP_OBJ_NEW_SMALL_INT(0);
        } else {
            return mp_obj_new_int((pyb_rtc_alarm0_expiry - now) / 1000);
        }
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_left_obj, 1, 2, pyb_rtc_alarm_left);
    
    STATIC mp_obj_t pyb_rtc_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
        enum { ARG_trigger, ARG_wake };
        static const mp_arg_t allowed_args[] = {
            { MP_QSTR_trigger, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
            { MP_QSTR_wake, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        };
        mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
        mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
    
        // check we want alarm0
        if (args[ARG_trigger].u_int != 0) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid alarm"));
        }
    
        // set the wake value
        pyb_rtc_alarm0_wake = args[ARG_wake].u_int;
    
        return mp_const_none;
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_irq_obj, 1, pyb_rtc_irq);
    
    STATIC const mp_map_elem_t pyb_rtc_locals_dict_table[] = {
        { MP_OBJ_NEW_QSTR(MP_QSTR_datetime), (mp_obj_t)&pyb_rtc_datetime_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_memory), (mp_obj_t)&pyb_rtc_memory_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_alarm), (mp_obj_t)&pyb_rtc_alarm_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_alarm_left), (mp_obj_t)&pyb_rtc_alarm_left_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_irq), (mp_obj_t)&pyb_rtc_irq_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_ALARM0), MP_OBJ_NEW_SMALL_INT(0) },
    };
    STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table);
    
    const mp_obj_type_t pyb_rtc_type = {
        { &mp_type_type },
        .name = MP_QSTR_RTC,
        .make_new = pyb_rtc_make_new,
        .locals_dict = (mp_obj_t)&pyb_rtc_locals_dict,
    };