Skip to content
Snippets Groups Projects
Select Git revision
  • 9dcc60d0b1241c2b6c2de7a8ca7b712655d05114
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

objtype.c

Blame
  • qstr.c 13.88 KiB
    /*
     * This file is part of the MicroPython project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2013, 2014 Damien P. George
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <assert.h>
    #include <string.h>
    #include <stdio.h>
    
    #include "py/mpstate.h"
    #include "py/qstr.h"
    #include "py/gc.h"
    #include "py/runtime.h"
    
    // NOTE: we are using linear arrays to store and search for qstr's (unique strings, interned strings)
    // ultimately we will replace this with a static hash table of some kind
    
    #if MICROPY_DEBUG_VERBOSE // print debugging info
    #define DEBUG_printf DEBUG_printf
    #else // don't print debugging info
    #define DEBUG_printf(...) (void)0
    #endif
    
    // A qstr is an index into the qstr pool.
    // The data for a qstr is \0 terminated (so they can be printed using printf)
    
    #define Q_HASH_MASK ((1 << (8 * MICROPY_QSTR_BYTES_IN_HASH)) - 1)
    
    #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL
    #define QSTR_ENTER() mp_thread_mutex_lock(&MP_STATE_VM(qstr_mutex), 1)
    #define QSTR_EXIT() mp_thread_mutex_unlock(&MP_STATE_VM(qstr_mutex))
    #else
    #define QSTR_ENTER()
    #define QSTR_EXIT()
    #endif
    
    // Initial number of entries for qstr pool, set so that the first dynamically
    // allocated pool is twice this size.  The value here must be <= MP_QSTRnumber_of.
    #define MICROPY_ALLOC_QSTR_ENTRIES_INIT (10)
    
    // this must match the equivalent function in makeqstrdata.py
    size_t qstr_compute_hash(const byte *data, size_t len) {
        // djb2 algorithm; see http://www.cse.yorku.ca/~oz/hash.html
        size_t hash = 5381;
        for (const byte *top = data + len; data < top; data++) {
            hash = ((hash << 5) + hash) ^ (*data); // hash * 33 ^ data
        }
        hash &= Q_HASH_MASK;
        // Make sure that valid hash is never zero, zero means "hash not computed"
        if (hash == 0) {
            hash++;
        }
        return hash;
    }
    
    const qstr_hash_t mp_qstr_const_hashes[] = {
        #ifndef NO_QSTR
    #define QDEF(id, hash, len, str) hash,
        #include "genhdr/qstrdefs.generated.h"
    #undef QDEF
        #endif
    };
    
    const qstr_len_t mp_qstr_const_lengths[] = {
        #ifndef NO_QSTR
    #define QDEF(id, hash, len, str) len,
        #include "genhdr/qstrdefs.generated.h"
    #undef QDEF
        #endif
    };
    
    const qstr_pool_t mp_qstr_const_pool = {
        NULL,               // no previous pool
        0,                  // no previous pool
        MICROPY_ALLOC_QSTR_ENTRIES_INIT,
        MP_QSTRnumber_of,   // corresponds to number of strings in array just below
        (qstr_hash_t *)mp_qstr_const_hashes,
        (qstr_len_t *)mp_qstr_const_lengths,
        {
            #ifndef NO_QSTR
    #define QDEF(id, hash, len, str) str,
            #include "genhdr/qstrdefs.generated.h"
    #undef QDEF
            #endif
        },
    };
    
    #ifdef MICROPY_QSTR_EXTRA_POOL
    extern const qstr_pool_t MICROPY_QSTR_EXTRA_POOL;
    #define CONST_POOL MICROPY_QSTR_EXTRA_POOL
    #else
    #define CONST_POOL mp_qstr_const_pool
    #endif
    
    void qstr_init(void) {
        MP_STATE_VM(last_pool) = (qstr_pool_t *)&CONST_POOL; // we won't modify the const_pool since it has no allocated room left
        MP_STATE_VM(qstr_last_chunk) = NULL;
    
        #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL
        mp_thread_mutex_init(&MP_STATE_VM(qstr_mutex));
        #endif
    }
    
    STATIC const qstr_pool_t *find_qstr(qstr *q) {
        // search pool for this qstr
        // total_prev_len==0 in the final pool, so the loop will always terminate
        const qstr_pool_t *pool = MP_STATE_VM(last_pool);
        while (*q < pool->total_prev_len) {
            pool = pool->prev;
        }
        *q -= pool->total_prev_len;
        assert(*q < pool->len);
        return pool;
    }
    
    // qstr_mutex must be taken while in this function
    STATIC qstr qstr_add(mp_uint_t hash, mp_uint_t len, const char *q_ptr) {
        printf("QSTR: add hash=%d len=%d data=%.*s\n", (int)hash, (int)len, (int)len, q_ptr);
    
        // make sure we have room in the pool for a new qstr
        if (MP_STATE_VM(last_pool)->len >= MP_STATE_VM(last_pool)->alloc) {
            size_t new_alloc = MP_STATE_VM(last_pool)->alloc * 2;
            #ifdef MICROPY_QSTR_EXTRA_POOL
            // Put a lower bound on the allocation size in case the extra qstr pool has few entries
            new_alloc = MAX(MICROPY_ALLOC_QSTR_ENTRIES_INIT, new_alloc);
            #endif
            mp_uint_t pool_size = sizeof(qstr_pool_t)
                + (sizeof(const char *) + sizeof(qstr_hash_t) + sizeof(qstr_len_t)) * new_alloc;
            qstr_pool_t *pool = (qstr_pool_t *)m_malloc_maybe(pool_size);
            if (pool == NULL) {
                // Keep qstr_last_chunk consistent with qstr_pool_t: qstr_last_chunk is not scanned
                // at garbage collection since it's reachable from a qstr_pool_t.  And the caller of
                // this function expects q_ptr to be stored in a qstr_pool_t so it can be reached
                // by the collector.  If qstr_pool_t allocation failed, qstr_last_chunk needs to be
                // NULL'd.  Otherwise it may become a dangling pointer at the next garbage collection.
                MP_STATE_VM(qstr_last_chunk) = NULL;
                QSTR_EXIT();
                m_malloc_fail(new_alloc);
            }
            pool->hashes = (qstr_hash_t *)(pool->qstrs + new_alloc);
            pool->lengths = (qstr_len_t *)(pool->hashes + new_alloc);
            pool->prev = MP_STATE_VM(last_pool);
            pool->total_prev_len = MP_STATE_VM(last_pool)->total_prev_len + MP_STATE_VM(last_pool)->len;
            pool->alloc = new_alloc;
            pool->len = 0;
            MP_STATE_VM(last_pool) = pool;
            DEBUG_printf("QSTR: allocate new pool of size %d\n", MP_STATE_VM(last_pool)->alloc);
        }
    
        // add the new qstr
        mp_uint_t at = MP_STATE_VM(last_pool)->len;
        MP_STATE_VM(last_pool)->hashes[at] = hash;
        MP_STATE_VM(last_pool)->lengths[at] = len;
        MP_STATE_VM(last_pool)->qstrs[at] = q_ptr;
        MP_STATE_VM(last_pool)->len++;
    
        // return id for the newly-added qstr
        return MP_STATE_VM(last_pool)->total_prev_len + at;
    }
    
    qstr qstr_find_strn(const char *str, size_t str_len) {
        // work out hash of str
        size_t str_hash = qstr_compute_hash((const byte *)str, str_len);
    
        // search pools for the data
        for (const qstr_pool_t *pool = MP_STATE_VM(last_pool); pool != NULL; pool = pool->prev) {
            for (mp_uint_t at = 0, top = pool->len; at < top; at++) {
                if (pool->hashes[at] == str_hash && pool->lengths[at] == str_len
                    && memcmp(pool->qstrs[at], str, str_len) == 0) {
                    return pool->total_prev_len + at;
                }
            }
        }
    
        // not found; return null qstr
        return 0;
    }
    
    qstr qstr_from_str(const char *str) {
        return qstr_from_strn(str, strlen(str));
    }
    
    qstr qstr_from_strn(const char *str, size_t len) {
        QSTR_ENTER();
        qstr q = qstr_find_strn(str, len);
        if (q == 0) {
            // qstr does not exist in interned pool so need to add it
    
            // check that len is not too big
            if (len >= (1 << (8 * MICROPY_QSTR_BYTES_IN_LEN))) {
                QSTR_EXIT();
                mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("name too long"));
            }
    
            // compute number of bytes needed to intern this string
            size_t n_bytes = len + 1;
    
            if (MP_STATE_VM(qstr_last_chunk) != NULL && MP_STATE_VM(qstr_last_used) + n_bytes > MP_STATE_VM(qstr_last_alloc)) {
                // not enough room at end of previously interned string so try to grow
                char *new_p = m_renew_maybe(char, MP_STATE_VM(qstr_last_chunk), MP_STATE_VM(qstr_last_alloc), MP_STATE_VM(qstr_last_alloc) + n_bytes, false);
                if (new_p == NULL) {
                    // could not grow existing memory; shrink it to fit previous
                    (void)m_renew_maybe(char, MP_STATE_VM(qstr_last_chunk), MP_STATE_VM(qstr_last_alloc), MP_STATE_VM(qstr_last_used), false);
                    MP_STATE_VM(qstr_last_chunk) = NULL;
                } else {
                    // could grow existing memory
                    MP_STATE_VM(qstr_last_alloc) += n_bytes;
                }
            }
    
            if (MP_STATE_VM(qstr_last_chunk) == NULL) {
                // no existing memory for the interned string so allocate a new chunk
                size_t al = n_bytes;
                if (al < MICROPY_ALLOC_QSTR_CHUNK_INIT) {
                    al = MICROPY_ALLOC_QSTR_CHUNK_INIT;
                }
                MP_STATE_VM(qstr_last_chunk) = m_new_maybe(char, al);
                if (MP_STATE_VM(qstr_last_chunk) == NULL) {
                    // failed to allocate a large chunk so try with exact size
                    MP_STATE_VM(qstr_last_chunk) = m_new_maybe(char, n_bytes);
                    if (MP_STATE_VM(qstr_last_chunk) == NULL) {
                        QSTR_EXIT();
                        m_malloc_fail(n_bytes);
                    }
                    al = n_bytes;
                }
                MP_STATE_VM(qstr_last_alloc) = al;
                MP_STATE_VM(qstr_last_used) = 0;
            }
    
            // allocate memory from the chunk for this new interned string's data
            char *q_ptr = MP_STATE_VM(qstr_last_chunk) + MP_STATE_VM(qstr_last_used);
            MP_STATE_VM(qstr_last_used) += n_bytes;
    
            // store the interned strings' data
            size_t hash = qstr_compute_hash((const byte *)str, len);
            memcpy(q_ptr, str, len);
            q_ptr[len] = '\0';
            q = qstr_add(hash, len, q_ptr);
        }
        QSTR_EXIT();
        return q;
    }
    
    mp_uint_t qstr_hash(qstr q) {
        const qstr_pool_t *pool = find_qstr(&q);
        return pool->hashes[q];
    }
    
    size_t qstr_len(qstr q) {
        const qstr_pool_t *pool = find_qstr(&q);
        return pool->lengths[q];
    }
    
    const char *qstr_str(qstr q) {
        const qstr_pool_t *pool = find_qstr(&q);
        return pool->qstrs[q];
    }
    
    const byte *qstr_data(qstr q, size_t *len) {
        const qstr_pool_t *pool = find_qstr(&q);
        *len = pool->lengths[q];
        return (byte *)pool->qstrs[q];
    }
    
    void qstr_pool_info(size_t *n_pool, size_t *n_qstr, size_t *n_str_data_bytes, size_t *n_total_bytes) {
        QSTR_ENTER();
        *n_pool = 0;
        *n_qstr = 0;
        *n_str_data_bytes = 0;
        *n_total_bytes = 0;
        for (const qstr_pool_t *pool = MP_STATE_VM(last_pool); pool != NULL && pool != &CONST_POOL; pool = pool->prev) {
            *n_pool += 1;
            *n_qstr += pool->len;
            for (qstr_len_t *l = pool->lengths, *l_top = pool->lengths + pool->len; l < l_top; l++) {
                *n_str_data_bytes += *l + 1;
            }
            #if MICROPY_ENABLE_GC
            *n_total_bytes += gc_nbytes(pool); // this counts actual bytes used in heap
            #else
            *n_total_bytes += sizeof(qstr_pool_t)
                + (sizeof(const char *) + sizeof(qstr_hash_t) + sizeof(qstr_len_t)) * pool->alloc;
            #endif
        }
        *n_total_bytes += *n_str_data_bytes;
        QSTR_EXIT();
    }
    
    #if MICROPY_PY_MICROPYTHON_MEM_INFO
    void qstr_dump_data(void) {
        QSTR_ENTER();
        for (const qstr_pool_t *pool = MP_STATE_VM(last_pool); pool != NULL && pool != &CONST_POOL; pool = pool->prev) {
            for (const char *const *q = pool->qstrs, *const *q_top = pool->qstrs + pool->len; q < q_top; q++) {
                mp_printf(&mp_plat_print, "Q(%s)\n", *q);
            }
        }
        QSTR_EXIT();
    }
    #endif
    
    #if MICROPY_ROM_TEXT_COMPRESSION
    
    #ifdef NO_QSTR
    
    // If NO_QSTR is set, it means we're doing QSTR extraction.
    // So we won't yet have "genhdr/compressed.data.h"
    
    #else
    
    // Emit the compressed_string_data string.
    #define MP_COMPRESSED_DATA(x) STATIC const char *compressed_string_data = x;
    #define MP_MATCH_COMPRESSED(a, b)
    #include "genhdr/compressed.data.h"
    #undef MP_COMPRESSED_DATA
    #undef MP_MATCH_COMPRESSED
    
    #endif // NO_QSTR
    
    // This implements the "common word" compression scheme (see makecompresseddata.py) where the most
    // common 128 words in error messages are replaced by their index into the list of common words.
    
    // The compressed string data is delimited by setting high bit in the final char of each word.
    // e.g. aaaa<0x80|a>bbbbbb<0x80|b>....
    // This method finds the n'th string.
    STATIC const byte *find_uncompressed_string(uint8_t n) {
        const byte *c = (byte *)compressed_string_data;
        while (n > 0) {
            while ((*c & 0x80) == 0) {
                ++c;
            }
            ++c;
            --n;
        }
        return c;
    }
    
    // Given a compressed string in src, decompresses it into dst.
    // dst must be large enough (use MP_MAX_UNCOMPRESSED_TEXT_LEN+1).
    void mp_decompress_rom_string(byte *dst, const mp_rom_error_text_t src_chr) {
        // Skip past the 0xff marker.
        const byte *src = (byte *)src_chr + 1;
        // Need to add spaces around compressed words, except for the first (i.e. transition from 1<->2).
        // 0 = start, 1 = compressed, 2 = regular.
        int state = 0;
        while (*src) {
            if ((byte) * src >= 128) {
                if (state != 0) {
                    *dst++ = ' ';
                }
                state = 1;
    
                // High bit set, replace with common word.
                const byte *word = find_uncompressed_string(*src & 0x7f);
                // The word is terminated by the final char having its high bit set.
                while ((*word & 0x80) == 0) {
                    *dst++ = *word++;
                }
                *dst++ = (*word & 0x7f);
            } else {
                // Otherwise just copy one char.
                if (state == 1) {
                    *dst++ = ' ';
                }
                state = 2;
    
                *dst++ = *src;
            }
            ++src;
        }
        // Add null-terminator.
        *dst = 0;
    }
    
    #endif // MICROPY_ROM_TEXT_COMPRESSION