Skip to content
Snippets Groups Projects
Select Git revision
  • a896951a9a8d8585d094e5ee6d7d37ff17d1b73e
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

modcmath.c

Blame
  • user avatar
    Paul Sokolovsky authored
    Automagically skip related modules.
    2b7236d2
    History
    modcmath.c 7.43 KiB
    /*
     * This file is part of the Micro Python project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2013, 2014 Damien P. George
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include "py/builtin.h"
    
    #if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_BUILTINS_COMPLEX && MICROPY_PY_CMATH
    
    #include <math.h>
    
    /// \module cmath - mathematical functions for complex numbers
    ///
    /// The `cmath` module provides some basic mathematical funtions for
    /// working with complex numbers.
    
    /// \function phase(z)
    /// Returns the phase of the number `z`, in the range (-pi, +pi].
    STATIC mp_obj_t mp_cmath_phase(mp_obj_t z_obj) {
        mp_float_t real, imag;
        mp_obj_get_complex(z_obj, &real, &imag);
        return mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real));
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_phase_obj, mp_cmath_phase);
    
    /// \function polar(z)
    /// Returns, as a tuple, the polar form of `z`.
    STATIC mp_obj_t mp_cmath_polar(mp_obj_t z_obj) {
        mp_float_t real, imag;
        mp_obj_get_complex(z_obj, &real, &imag);
        mp_obj_t tuple[2] = {
            mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(real*real + imag*imag)),
            mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real)),
        };
        return mp_obj_new_tuple(2, tuple);
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar);
    
    /// \function rect(r, phi)
    /// Returns the complex number with modulus `r` and phase `phi`.
    STATIC mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) {
        mp_float_t r = mp_obj_get_float(r_obj);
        mp_float_t phi = mp_obj_get_float(phi_obj);
        return mp_obj_new_complex(r * MICROPY_FLOAT_C_FUN(cos)(phi), r * MICROPY_FLOAT_C_FUN(sin)(phi));
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect);
    
    /// \function exp(z)
    /// Return the exponential of `z`.
    STATIC mp_obj_t mp_cmath_exp(mp_obj_t z_obj) {
        mp_float_t real, imag;
        mp_obj_get_complex(z_obj, &real, &imag);
        mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real);
        return mp_obj_new_complex(exp_real * MICROPY_FLOAT_C_FUN(cos)(imag), exp_real * MICROPY_FLOAT_C_FUN(sin)(imag));
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp);
    
    /// \function log(z)
    /// Return the natural logarithm of `z`.  The branch cut is along the negative real axis.
    // TODO can take second argument, being the base
    STATIC mp_obj_t mp_cmath_log(mp_obj_t z_obj) {
        mp_float_t real, imag;
        mp_obj_get_complex(z_obj, &real, &imag);
        return mp_obj_new_complex(0.5 * MICROPY_FLOAT_C_FUN(log)(real*real + imag*imag), MICROPY_FLOAT_C_FUN(atan2)(imag, real));
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log);
    
    #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
    /// \function log10(z)
    /// Return the base-10 logarithm of `z`.  The branch cut is along the negative real axis.
    STATIC mp_obj_t mp_cmath_log10(mp_obj_t z_obj) {
        mp_float_t real, imag;
        mp_obj_get_complex(z_obj, &real, &imag);
        return mp_obj_new_complex(0.5 * MICROPY_FLOAT_C_FUN(log10)(real*real + imag*imag), 0.4342944819032518 * MICROPY_FLOAT_C_FUN(atan2)(imag, real));
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10);
    #endif
    
    /// \function sqrt(z)
    /// Return the square-root of `z`.
    STATIC mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) {
        mp_float_t real, imag;
        mp_obj_get_complex(z_obj, &real, &imag);
        mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(pow)(real*real + imag*imag, 0.25);
        mp_float_t theta = 0.5 * MICROPY_FLOAT_C_FUN(atan2)(imag, real);
        return mp_obj_new_complex(sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta), sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta));
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt);
    
    /// \function cos(z)
    /// Return the cosine of `z`.
    STATIC mp_obj_t mp_cmath_cos(mp_obj_t z_obj) {
        mp_float_t real, imag;
        mp_obj_get_complex(z_obj, &real, &imag);
        return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), -MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag));
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos);
    
    /// \function sin(z)
    /// Return the sine of `z`.
    STATIC mp_obj_t mp_cmath_sin(mp_obj_t z_obj) {
        mp_float_t real, imag;
        mp_obj_get_complex(z_obj, &real, &imag);
        return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag));
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sin_obj, mp_cmath_sin);
    
    STATIC const mp_rom_map_elem_t mp_module_cmath_globals_table[] = {
        { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_cmath) },
        { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
        { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
        { MP_ROM_QSTR(MP_QSTR_phase), MP_ROM_PTR(&mp_cmath_phase_obj) },
        { MP_ROM_QSTR(MP_QSTR_polar), MP_ROM_PTR(&mp_cmath_polar_obj) },
        { MP_ROM_QSTR(MP_QSTR_rect), MP_ROM_PTR(&mp_cmath_rect_obj) },
        { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_cmath_exp_obj) },
        { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_cmath_log_obj) },
        #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
        { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_cmath_log10_obj) },
        #endif
        { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_cmath_sqrt_obj) },
        //{ MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_cmath_acos_obj) },
        //{ MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_cmath_asin_obj) },
        //{ MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_cmath_atan_obj) },
        { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_cmath_cos_obj) },
        { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_cmath_sin_obj) },
        //{ MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_cmath_tan_obj) },
        //{ MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_cmath_acosh_obj) },
        //{ MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_cmath_asinh_obj) },
        //{ MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_cmath_atanh_obj) },
        //{ MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_cmath_cosh_obj) },
        //{ MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_cmath_sinh_obj) },
        //{ MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_cmath_tanh_obj) },
        //{ MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_cmath_isfinite_obj) },
        //{ MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_cmath_isinf_obj) },
        //{ MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_cmath_isnan_obj) },
    };
    
    STATIC MP_DEFINE_CONST_DICT(mp_module_cmath_globals, mp_module_cmath_globals_table);
    
    const mp_obj_module_t mp_module_cmath = {
        .base = { &mp_type_module },
        .name = MP_QSTR_cmath,
        .globals = (mp_obj_dict_t*)&mp_module_cmath_globals,
    };
    
    #endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_CMATH