Skip to content
Snippets Groups Projects
Select Git revision
  • a896951a9a8d8585d094e5ee6d7d37ff17d1b73e
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

objfun.c

Blame
  • objfun.c 19.10 KiB
    /*
     * This file is part of the Micro Python project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2013, 2014 Damien P. George
     * Copyright (c) 2014 Paul Sokolovsky
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <string.h>
    #include <assert.h>
    
    #include "py/nlr.h"
    #include "py/objtuple.h"
    #include "py/objfun.h"
    #include "py/runtime0.h"
    #include "py/runtime.h"
    #include "py/bc.h"
    #include "py/stackctrl.h"
    
    #if 0 // print debugging info
    #define DEBUG_PRINT (1)
    #else // don't print debugging info
    #define DEBUG_PRINT (0)
    #define DEBUG_printf(...) (void)0
    #endif
    
    // Note: the "name" entry in mp_obj_type_t for a function type must be
    // MP_QSTR_function because it is used to determine if an object is of generic
    // function type.
    
    /******************************************************************************/
    /* builtin functions                                                          */
    
    // mp_obj_fun_builtin_t defined in obj.h
    
    STATIC mp_obj_t fun_builtin_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
        assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin));
        mp_obj_fun_builtin_t *self = MP_OBJ_TO_PTR(self_in);
    
        // check number of arguments
        mp_arg_check_num(n_args, n_kw, self->n_args_min, self->n_args_max, self->is_kw);
    
        if (self->is_kw) {
            // function allows keywords
    
            // we create a map directly from the given args array
            mp_map_t kw_args;
            mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
    
            return self->fun.kw(n_args, args, &kw_args);
    
        } else if (self->n_args_min <= 3 && self->n_args_min == self->n_args_max) {
            // function requires a fixed number of arguments
    
            // dispatch function call
            switch (self->n_args_min) {
                case 0:
                    return self->fun._0();
    
                case 1:
                    return self->fun._1(args[0]);
    
                case 2:
                    return self->fun._2(args[0], args[1]);
    
                case 3:
                default:
                    return self->fun._3(args[0], args[1], args[2]);
            }
    
        } else {
            // function takes a variable number of arguments, but no keywords
    
            return self->fun.var(n_args, args);
        }
    }
    
    const mp_obj_type_t mp_type_fun_builtin = {
        { &mp_type_type },
        .name = MP_QSTR_function,
        .call = fun_builtin_call,
        .unary_op = mp_generic_unary_op,
    };
    
    /******************************************************************************/
    /* byte code functions                                                        */
    
    qstr mp_obj_code_get_name(const byte *code_info) {
        mp_decode_uint(&code_info); // skip code_info_size entry
        #if MICROPY_PERSISTENT_CODE
        return code_info[0] | (code_info[1] << 8);
        #else
        return mp_decode_uint(&code_info);
        #endif
    }
    
    #if MICROPY_EMIT_NATIVE
    STATIC const mp_obj_type_t mp_type_fun_native;
    #endif
    
    qstr mp_obj_fun_get_name(mp_const_obj_t fun_in) {
        const mp_obj_fun_bc_t *fun = MP_OBJ_TO_PTR(fun_in);
        #if MICROPY_EMIT_NATIVE
        if (fun->base.type == &mp_type_fun_native) {
            // TODO native functions don't have name stored
            return MP_QSTR_;
        }
        #endif
    
        const byte *bc = fun->bytecode;
        mp_decode_uint(&bc); // skip n_state
        mp_decode_uint(&bc); // skip n_exc_stack
        bc++; // skip scope_params
        bc++; // skip n_pos_args
        bc++; // skip n_kwonly_args
        bc++; // skip n_def_pos_args
        return mp_obj_code_get_name(bc);
    }
    
    #if MICROPY_CPYTHON_COMPAT
    STATIC void fun_bc_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) {
        (void)kind;
        mp_obj_fun_bc_t *o = MP_OBJ_TO_PTR(o_in);
        mp_printf(print, "<function %q at 0x%p>", mp_obj_fun_get_name(o_in), o);
    }
    #endif
    
    #if DEBUG_PRINT
    STATIC void dump_args(const mp_obj_t *a, mp_uint_t sz) {
        DEBUG_printf("%p: ", a);
        for (mp_uint_t i = 0; i < sz; i++) {
            DEBUG_printf("%p ", a[i]);
        }
        DEBUG_printf("\n");
    }
    #else
    #define dump_args(...) (void)0
    #endif
    
    // With this macro you can tune the maximum number of function state bytes
    // that will be allocated on the stack.  Any function that needs more
    // than this will try to use the heap, with fallback to stack allocation.
    #define VM_MAX_STATE_ON_STACK (11 * sizeof(mp_uint_t))
    
    // Set this to enable a simple stack overflow check.
    #define VM_DETECT_STACK_OVERFLOW (0)
    
    #if MICROPY_STACKLESS
    mp_code_state *mp_obj_fun_bc_prepare_codestate(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
        MP_STACK_CHECK();
        mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in);
    
        // get start of bytecode
        const byte *ip = self->bytecode;
    
        // bytecode prelude: state size and exception stack size
        size_t n_state = mp_decode_uint(&ip);
        size_t n_exc_stack = mp_decode_uint(&ip);
    
        // allocate state for locals and stack
        size_t state_size = n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t);
        mp_code_state *code_state;
        code_state = m_new_obj_var_maybe(mp_code_state, byte, state_size);
        if (!code_state) {
            return NULL;
        }
    
        code_state->ip = (byte*)(ip - self->bytecode); // offset to after n_state/n_exc_stack
        code_state->n_state = n_state;
        mp_setup_code_state(code_state, self, n_args, n_kw, args);
    
        // execute the byte code with the correct globals context
        code_state->old_globals = mp_globals_get();
        mp_globals_set(self->globals);
    
        return code_state;
    }
    #endif
    
    STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
        MP_STACK_CHECK();
    
        DEBUG_printf("Input n_args: " UINT_FMT ", n_kw: " UINT_FMT "\n", n_args, n_kw);
        DEBUG_printf("Input pos args: ");
        dump_args(args, n_args);
        DEBUG_printf("Input kw args: ");
        dump_args(args + n_args, n_kw * 2);
        mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in);
        DEBUG_printf("Func n_def_args: %d\n", self->n_def_args);
    
        // get start of bytecode
        const byte *ip = self->bytecode;
    
        // bytecode prelude: state size and exception stack size
        mp_uint_t n_state = mp_decode_uint(&ip);
        mp_uint_t n_exc_stack = mp_decode_uint(&ip);
    
    #if VM_DETECT_STACK_OVERFLOW
        n_state += 1;
    #endif
    
        // allocate state for locals and stack
        mp_uint_t state_size = n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t);
        mp_code_state *code_state = NULL;
        if (state_size > VM_MAX_STATE_ON_STACK) {
            code_state = m_new_obj_var_maybe(mp_code_state, byte, state_size);
        }
        if (code_state == NULL) {
            code_state = alloca(sizeof(mp_code_state) + state_size);
            state_size = 0; // indicate that we allocated using alloca
        }
    
        code_state->ip = (byte*)(ip - self->bytecode); // offset to after n_state/n_exc_stack
        code_state->n_state = n_state;
        mp_setup_code_state(code_state, self, n_args, n_kw, args);
    
        // execute the byte code with the correct globals context
        code_state->old_globals = mp_globals_get();
        mp_globals_set(self->globals);
        mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode(code_state, MP_OBJ_NULL);
        mp_globals_set(code_state->old_globals);
    
    #if VM_DETECT_STACK_OVERFLOW
        if (vm_return_kind == MP_VM_RETURN_NORMAL) {
            if (code_state->sp < code_state->state) {
                printf("VM stack underflow: " INT_FMT "\n", code_state->sp - code_state->state);
                assert(0);
            }
        }
        // We can't check the case when an exception is returned in state[n_state - 1]
        // and there are no arguments, because in this case our detection slot may have
        // been overwritten by the returned exception (which is allowed).
        if (!(vm_return_kind == MP_VM_RETURN_EXCEPTION && self->n_pos_args + self->n_kwonly_args == 0)) {
            // Just check to see that we have at least 1 null object left in the state.
            bool overflow = true;
            for (mp_uint_t i = 0; i < n_state - self->n_pos_args - self->n_kwonly_args; i++) {
                if (code_state->state[i] == MP_OBJ_NULL) {
                    overflow = false;
                    break;
                }
            }
            if (overflow) {
                printf("VM stack overflow state=%p n_state+1=" UINT_FMT "\n", code_state->state, n_state);
                assert(0);
            }
        }
    #endif
    
        mp_obj_t result;
        switch (vm_return_kind) {
            case MP_VM_RETURN_NORMAL:
                // return value is in *sp
                result = *code_state->sp;
                break;
    
            case MP_VM_RETURN_EXCEPTION:
                // return value is in state[n_state - 1]
                result = code_state->state[n_state - 1];
                break;
    
            case MP_VM_RETURN_YIELD: // byte-code shouldn't yield
            default:
                assert(0);
                result = mp_const_none;
                vm_return_kind = MP_VM_RETURN_NORMAL;
                break;
        }
    
        // free the state if it was allocated on the heap
        if (state_size != 0) {
            m_del_var(mp_code_state, byte, state_size, code_state);
        }
    
        if (vm_return_kind == MP_VM_RETURN_NORMAL) {
            return result;
        } else { // MP_VM_RETURN_EXCEPTION
            nlr_raise(result);
        }
    }
    
    #if MICROPY_PY_FUNCTION_ATTRS
    STATIC void fun_bc_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
        if (dest[0] != MP_OBJ_NULL) {
            // not load attribute
            return;
        }
        if (attr == MP_QSTR___name__) {
            dest[0] = MP_OBJ_NEW_QSTR(mp_obj_fun_get_name(self_in));
        }
    }
    #endif
    
    const mp_obj_type_t mp_type_fun_bc = {
        { &mp_type_type },
        .name = MP_QSTR_function,
    #if MICROPY_CPYTHON_COMPAT
        .print = fun_bc_print,
    #endif
        .call = fun_bc_call,
        .unary_op = mp_generic_unary_op,
    #if MICROPY_PY_FUNCTION_ATTRS
        .attr = fun_bc_attr,
    #endif
    };
    
    mp_obj_t mp_obj_new_fun_bc(mp_obj_t def_args_in, mp_obj_t def_kw_args, const byte *code, const mp_uint_t *const_table) {
        mp_uint_t n_def_args = 0;
        mp_uint_t n_extra_args = 0;
        mp_obj_tuple_t *def_args = MP_OBJ_TO_PTR(def_args_in);
        if (def_args_in != MP_OBJ_NULL) {
            assert(MP_OBJ_IS_TYPE(def_args_in, &mp_type_tuple));
            n_def_args = def_args->len;
            n_extra_args = def_args->len;
        }
        if (def_kw_args != MP_OBJ_NULL) {
            n_extra_args += 1;
        }
        mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args);
        o->base.type = &mp_type_fun_bc;
        o->globals = mp_globals_get();
        o->bytecode = code;
        o->const_table = const_table;
        if (def_args != NULL) {
            memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t));
        }
        if (def_kw_args != MP_OBJ_NULL) {
            o->extra_args[n_def_args] = def_kw_args;
        }
        return MP_OBJ_FROM_PTR(o);
    }
    
    /******************************************************************************/
    /* native functions                                                           */
    
    #if MICROPY_EMIT_NATIVE
    
    STATIC mp_obj_t fun_native_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
        MP_STACK_CHECK();
        mp_obj_fun_bc_t *self = self_in;
        mp_call_fun_t fun = MICROPY_MAKE_POINTER_CALLABLE((void*)self->bytecode);
        return fun(self_in, n_args, n_kw, args);
    }
    
    STATIC const mp_obj_type_t mp_type_fun_native = {
        { &mp_type_type },
        .name = MP_QSTR_function,
        .call = fun_native_call,
        .unary_op = mp_generic_unary_op,
    };
    
    mp_obj_t mp_obj_new_fun_native(mp_obj_t def_args_in, mp_obj_t def_kw_args, const void *fun_data, const mp_uint_t *const_table) {
        mp_obj_fun_bc_t *o = mp_obj_new_fun_bc(def_args_in, def_kw_args, (const byte*)fun_data, const_table);
        o->base.type = &mp_type_fun_native;
        return o;
    }
    
    #endif // MICROPY_EMIT_NATIVE
    
    /******************************************************************************/
    /* viper functions                                                            */
    
    #if MICROPY_EMIT_NATIVE
    
    typedef struct _mp_obj_fun_viper_t {
        mp_obj_base_t base;
        mp_uint_t n_args;
        void *fun_data; // GC must be able to trace this pointer
        mp_uint_t type_sig;
    } mp_obj_fun_viper_t;
    
    typedef mp_uint_t (*viper_fun_0_t)(void);
    typedef mp_uint_t (*viper_fun_1_t)(mp_uint_t);
    typedef mp_uint_t (*viper_fun_2_t)(mp_uint_t, mp_uint_t);
    typedef mp_uint_t (*viper_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
    typedef mp_uint_t (*viper_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t);
    
    STATIC mp_obj_t fun_viper_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
        mp_obj_fun_viper_t *self = self_in;
    
        mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);
    
        void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);
    
        mp_uint_t ret;
        if (n_args == 0) {
            ret = ((viper_fun_0_t)fun)();
        } else if (n_args == 1) {
            ret = ((viper_fun_1_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4));
        } else if (n_args == 2) {
            ret = ((viper_fun_2_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4), mp_convert_obj_to_native(args[1], self->type_sig >> 8));
        } else if (n_args == 3) {
            ret = ((viper_fun_3_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4), mp_convert_obj_to_native(args[1], self->type_sig >> 8), mp_convert_obj_to_native(args[2], self->type_sig >> 12));
        } else if (n_args == 4) {
            ret = ((viper_fun_4_t)fun)(
                mp_convert_obj_to_native(args[0], self->type_sig >> 4),
                mp_convert_obj_to_native(args[1], self->type_sig >> 8),
                mp_convert_obj_to_native(args[2], self->type_sig >> 12),
                mp_convert_obj_to_native(args[3], self->type_sig >> 16)
            );
        } else {
            // TODO 5 or more arguments not supported for viper call
            assert(0);
            ret = 0;
        }
    
        return mp_convert_native_to_obj(ret, self->type_sig);
    }
    
    STATIC const mp_obj_type_t mp_type_fun_viper = {
        { &mp_type_type },
        .name = MP_QSTR_function,
        .call = fun_viper_call,
        .unary_op = mp_generic_unary_op,
    };
    
    mp_obj_t mp_obj_new_fun_viper(mp_uint_t n_args, void *fun_data, mp_uint_t type_sig) {
        mp_obj_fun_viper_t *o = m_new_obj(mp_obj_fun_viper_t);
        o->base.type = &mp_type_fun_viper;
        o->n_args = n_args;
        o->fun_data = fun_data;
        o->type_sig = type_sig;
        return o;
    }
    
    #endif // MICROPY_EMIT_NATIVE
    
    /******************************************************************************/
    /* inline assembler functions                                                 */
    
    #if MICROPY_EMIT_INLINE_THUMB
    
    typedef struct _mp_obj_fun_asm_t {
        mp_obj_base_t base;
        mp_uint_t n_args;
        void *fun_data; // GC must be able to trace this pointer
        mp_uint_t type_sig;
    } mp_obj_fun_asm_t;
    
    typedef mp_uint_t (*inline_asm_fun_0_t)(void);
    typedef mp_uint_t (*inline_asm_fun_1_t)(mp_uint_t);
    typedef mp_uint_t (*inline_asm_fun_2_t)(mp_uint_t, mp_uint_t);
    typedef mp_uint_t (*inline_asm_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
    typedef mp_uint_t (*inline_asm_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t);
    
    // convert a Micro Python object to a sensible value for inline asm
    STATIC mp_uint_t convert_obj_for_inline_asm(mp_obj_t obj) {
        // TODO for byte_array, pass pointer to the array
        if (MP_OBJ_IS_SMALL_INT(obj)) {
            return MP_OBJ_SMALL_INT_VALUE(obj);
        } else if (obj == mp_const_none) {
            return 0;
        } else if (obj == mp_const_false) {
            return 0;
        } else if (obj == mp_const_true) {
            return 1;
        } else if (MP_OBJ_IS_TYPE(obj, &mp_type_int)) {
            return mp_obj_int_get_truncated(obj);
        } else if (MP_OBJ_IS_STR(obj)) {
            // pointer to the string (it's probably constant though!)
            mp_uint_t l;
            return (mp_uint_t)mp_obj_str_get_data(obj, &l);
        } else {
            mp_obj_type_t *type = mp_obj_get_type(obj);
            if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
            } else if (type == &mp_type_float) {
                // convert float to int (could also pass in float registers)
                return (mp_int_t)mp_obj_float_get(obj);
    #endif
            } else if (type == &mp_type_tuple) {
                // pointer to start of tuple (could pass length, but then could use len(x) for that)
                mp_uint_t len;
                mp_obj_t *items;
                mp_obj_tuple_get(obj, &len, &items);
                return (mp_uint_t)items;
            } else if (type == &mp_type_list) {
                // pointer to start of list (could pass length, but then could use len(x) for that)
                mp_uint_t len;
                mp_obj_t *items;
                mp_obj_list_get(obj, &len, &items);
                return (mp_uint_t)items;
            } else {
                mp_buffer_info_t bufinfo;
                if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_WRITE)) {
                    // supports the buffer protocol, return a pointer to the data
                    return (mp_uint_t)bufinfo.buf;
                } else {
                    // just pass along a pointer to the object
                    return (mp_uint_t)obj;
                }
            }
        }
    }
    
    STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
        mp_obj_fun_asm_t *self = self_in;
    
        mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);
    
        void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);
    
        mp_uint_t ret;
        if (n_args == 0) {
            ret = ((inline_asm_fun_0_t)fun)();
        } else if (n_args == 1) {
            ret = ((inline_asm_fun_1_t)fun)(convert_obj_for_inline_asm(args[0]));
        } else if (n_args == 2) {
            ret = ((inline_asm_fun_2_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]));
        } else if (n_args == 3) {
            ret = ((inline_asm_fun_3_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]));
        } else {
            // compiler allows at most 4 arguments
            assert(n_args == 4);
            ret = ((inline_asm_fun_4_t)fun)(
                convert_obj_for_inline_asm(args[0]),
                convert_obj_for_inline_asm(args[1]),
                convert_obj_for_inline_asm(args[2]),
                convert_obj_for_inline_asm(args[3])
            );
        }
    
        return mp_convert_native_to_obj(ret, self->type_sig);
    }
    
    STATIC const mp_obj_type_t mp_type_fun_asm = {
        { &mp_type_type },
        .name = MP_QSTR_function,
        .call = fun_asm_call,
        .unary_op = mp_generic_unary_op,
    };
    
    mp_obj_t mp_obj_new_fun_asm(mp_uint_t n_args, void *fun_data, mp_uint_t type_sig) {
        mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t);
        o->base.type = &mp_type_fun_asm;
        o->n_args = n_args;
        o->fun_data = fun_data;
        o->type_sig = type_sig;
        return o;
    }
    
    #endif // MICROPY_EMIT_INLINE_THUMB