Skip to content
Snippets Groups Projects
Select Git revision
  • b14de21fc806d11e9af40d64da0f2cea953345f9
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

parse.c

Blame
  • parse.c 22.12 KiB
    #include <unistd.h>
    #include <stdlib.h>
    #include <stdint.h>
    #include <stdio.h>
    #include <ctype.h>
    #include <string.h>
    #include <assert.h>
    
    #include "misc.h"
    #include "lexer.h"
    #include "machine.h"
    #include "parse.h"
    
    #define RULE_ACT_KIND_MASK      (0xf0)
    #define RULE_ACT_ARG_MASK       (0x0f)
    #define RULE_ACT_OR             (0x10)
    #define RULE_ACT_AND            (0x20)
    #define RULE_ACT_LIST           (0x30)
    
    #define RULE_ARG_BLANK          (0x0000)
    #define RULE_ARG_KIND_MASK      (0xf000)
    #define RULE_ARG_ARG_MASK       (0x0fff)
    #define RULE_ARG_TOK            (0x1000)
    #define RULE_ARG_RULE           (0x2000)
    #define RULE_ARG_OPT_TOK        (0x3000)
    #define RULE_ARG_OPT_RULE       (0x4000)
    
    // (un)comment to use rule names; for debugging
    //#define USE_RULE_NAME (1)
    
    typedef struct _rule_t {
        byte rule_id;
        byte act;
    #ifdef USE_RULE_NAME
        const char *rule_name;
    #endif
        uint16_t arg[];
    } rule_t;
    
    enum {
        RULE_none = 0,
    #define DEF_RULE(rule, comp, kind, arg...) RULE_##rule,
    #include "grammar.h"
    #undef DEF_RULE
        RULE_maximum_number_of,
    };
    
    #define or(n)                   (RULE_ACT_OR | n)
    #define and(n)                  (RULE_ACT_AND | n)
    #define one_or_more             (RULE_ACT_LIST | 2)
    #define list                    (RULE_ACT_LIST | 1)
    #define list_with_end           (RULE_ACT_LIST | 3)
    #define tok(t)                  (RULE_ARG_TOK | PY_TOKEN_##t)
    #define rule(r)                 (RULE_ARG_RULE | RULE_##r)
    #define opt_tok(t)              (RULE_ARG_OPT_TOK | PY_TOKEN_##t)
    #define opt_rule(r)             (RULE_ARG_OPT_RULE | RULE_##r)
    #ifdef USE_RULE_NAME
    #define DEF_RULE(rule, comp, kind, arg...) static rule_t rule_##rule = { RULE_##rule, kind, #rule, { arg } };
    #else
    #define DEF_RULE(rule, comp, kind, arg...) static rule_t rule_##rule = { RULE_##rule, kind, { arg } };
    #endif
    #include "grammar.h"
    #undef or
    #undef and
    #undef list
    #undef list_with_end
    #undef tok
    #undef rule
    #undef opt_tok
    #undef opt_rule
    #undef one_or_more
    #undef DEF_RULE
    
    static rule_t *rules[] = {
        NULL,
    #define DEF_RULE(rule, comp, kind, arg...) &rule_##rule,
    #include "grammar.h"
    #undef DEF_RULE
    };
    
    typedef struct _rule_stack_t {
        byte rule_id;
        int32_t arg_i; // what should be the size and signedness?
    } rule_stack_t;
    
    typedef struct _parser_t {
        uint rule_stack_alloc;
        uint rule_stack_top;
        rule_stack_t *rule_stack;
    
        uint result_stack_top;
        py_parse_node_t *result_stack;
    } parser_t;
    
    static void push_rule(parser_t *parser, rule_t *rule, int arg_i) {
        if (parser->rule_stack_top >= parser->rule_stack_alloc) {
            parser->rule_stack_alloc *= 2;
            parser->rule_stack = m_renew(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc);
        }
        parser->rule_stack[parser->rule_stack_top].rule_id = rule->rule_id;
        parser->rule_stack[parser->rule_stack_top].arg_i = arg_i;
        parser->rule_stack_top += 1;
    }
    
    static void push_rule_from_arg(parser_t *parser, uint arg) {
        assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE);
        uint rule_id = arg & RULE_ARG_ARG_MASK;
        assert(rule_id < RULE_maximum_number_of);
        push_rule(parser, rules[rule_id], 0);
    }
    
    static void pop_rule(parser_t *parser, rule_t **rule, uint *arg_i) {
        parser->rule_stack_top -= 1;
        *rule = rules[parser->rule_stack[parser->rule_stack_top].rule_id];
        *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i;
    }
    
    py_parse_node_t py_parse_node_new_leaf(machine_int_t kind, machine_int_t arg) {
        return (py_parse_node_t)(kind | (arg << 4));
    }
    
    int num_parse_nodes_allocated = 0;
    py_parse_node_struct_t *parse_node_new_struct(int rule_id, int num_args) {
        py_parse_node_struct_t *pn = m_malloc(sizeof(py_parse_node_struct_t) + num_args * sizeof(py_parse_node_t));
        pn->source = 0; // TODO
        pn->kind_num_nodes = (rule_id & 0xff) | (num_args << 8);
        num_parse_nodes_allocated += 1;
        return pn;
    }
    
    void parse_node_show(py_parse_node_t pn, int indent) {
        for (int i = 0; i < indent; i++) {
            printf(" ");
        }
        if (PY_PARSE_NODE_IS_NULL(pn)) {
            printf("NULL\n");
        } else if (PY_PARSE_NODE_IS_LEAF(pn)) {
            int arg = PY_PARSE_NODE_LEAF_ARG(pn);
            switch (PY_PARSE_NODE_LEAF_KIND(pn)) {
                case PY_PARSE_NODE_ID: printf("id(%s)\n", qstr_str(arg)); break;
                case PY_PARSE_NODE_SMALL_INT: printf("int(%d)\n", arg); break;
                case PY_PARSE_NODE_INTEGER: printf("int(%s)\n", qstr_str(arg)); break;
                case PY_PARSE_NODE_DECIMAL: printf("dec(%s)\n", qstr_str(arg)); break;
                case PY_PARSE_NODE_STRING: printf("str(%s)\n", qstr_str(arg)); break;
                case PY_PARSE_NODE_BYTES: printf("bytes(%s)\n", qstr_str(arg)); break;
                case PY_PARSE_NODE_TOKEN: printf("tok(%d)\n", arg); break;
                default: assert(0);
            }
        } else {
            py_parse_node_struct_t *pns2 = (py_parse_node_struct_t*)pn;
            int n = pns2->kind_num_nodes >> 8;
    #ifdef USE_RULE_NAME
            printf("%s(%d) (n=%d)\n", rules[PY_PARSE_NODE_STRUCT_KIND(pns2)]->rule_name, PY_PARSE_NODE_STRUCT_KIND(pns2), n);
    #else
            printf("rule(%u) (n=%d)\n", (uint)PY_PARSE_NODE_STRUCT_KIND(pns2), n);
    #endif
            for (int i = 0; i < n; i++) {
                parse_node_show(pns2->nodes[i], indent + 2);
            }
        }
    }
    
    /*
    static void result_stack_show(parser_t *parser) {
        printf("result stack, most recent first\n");
        for (int i = parser->result_stack_top - 1; i >= 0; i--) {
            parse_node_show(parser->result_stack[i], 0);
        }
    }
    */
    
    static py_parse_node_t pop_result(parser_t *parser) {
        assert(parser->result_stack_top > 0);
        return parser->result_stack[--parser->result_stack_top];
    }
    
    static py_parse_node_t peek_result(parser_t *parser, int pos) {
        assert(parser->result_stack_top > pos);
        return parser->result_stack[parser->result_stack_top - 1 - pos];
    }
    
    static void push_result_node(parser_t *parser, py_parse_node_t pn) {
        parser->result_stack[parser->result_stack_top++] = pn;
    }
    
    static void push_result_token(parser_t *parser, const py_lexer_t *lex) {
        const py_token_t *tok = py_lexer_cur(lex);
        py_parse_node_t pn;
        if (tok->kind == PY_TOKEN_NAME) {
            pn = py_parse_node_new_leaf(PY_PARSE_NODE_ID, qstr_from_strn_copy(tok->str, tok->len));
        } else if (tok->kind == PY_TOKEN_NUMBER) {
            bool dec = false;
            bool small_int = true;
            int int_val = 0;
            int len = tok->len;
            const char *str = tok->str;
            int base = 10;
            int i = 0;
            if (len >= 3 && str[0] == '0') {
                if (str[1] == 'o' || str[1] == 'O') {
                    // octal
                    base = 8;
                    i = 2;
                } else if (str[1] == 'x' || str[1] == 'X') {
                    // hexadecimal
                    base = 16;
                    i = 2;
                } else if (str[1] == 'b' || str[1] == 'B') {
                    // binary
                    base = 2;
                    i = 2;
                }
            }
            for (; i < len; i++) {
                if (g_unichar_isdigit(str[i]) && str[i] - '0' < base) {
                    int_val = base * int_val + str[i] - '0';
                } else if (base == 16 && 'a' <= str[i] && str[i] <= 'f') {
                    int_val = base * int_val + str[i] - 'a' + 10;
                } else if (base == 16 && 'F' <= str[i] && str[i] <= 'F') {
                    int_val = base * int_val + str[i] - 'A' + 10;
                } else if (str[i] == '.' || str[i] == 'e' || str[i] == 'E') {
                    dec = true;
                    break;
                } else {
                    small_int = false;
                    break;
                }
            }
            if (dec) {
                pn = py_parse_node_new_leaf(PY_PARSE_NODE_DECIMAL, qstr_from_strn_copy(str, len));
            } else if (small_int && -0x800000 <= int_val && int_val <= 0x7fffff) { // XXX check this range formula!
                pn = py_parse_node_new_leaf(PY_PARSE_NODE_SMALL_INT, int_val);
            } else {
                pn = py_parse_node_new_leaf(PY_PARSE_NODE_INTEGER, qstr_from_strn_copy(str, len));
            }
        } else if (tok->kind == PY_TOKEN_STRING) {
            pn = py_parse_node_new_leaf(PY_PARSE_NODE_STRING, qstr_from_strn_copy(tok->str, tok->len));
        } else if (tok->kind == PY_TOKEN_BYTES) {
            pn = py_parse_node_new_leaf(PY_PARSE_NODE_BYTES, qstr_from_strn_copy(tok->str, tok->len));
        } else {
            pn = py_parse_node_new_leaf(PY_PARSE_NODE_TOKEN, tok->kind);
        }
        push_result_node(parser, pn);
    }
    
    static void push_result_rule(parser_t *parser, rule_t *rule, int num_args) {
        py_parse_node_struct_t *pn = parse_node_new_struct(rule->rule_id, num_args);
        for (int i = num_args; i > 0; i--) {
            pn->nodes[i - 1] = pop_result(parser);
        }
        push_result_node(parser, (py_parse_node_t)pn);
    }
    
    py_parse_node_t py_parse(py_lexer_t *lex, int wanted_rule) {
        wanted_rule = RULE_file_input;
        parser_t *parser = m_new(parser_t, 1);
        parser->rule_stack_alloc = 64;
        parser->rule_stack_top = 0;
        parser->rule_stack = m_new(rule_stack_t, parser->rule_stack_alloc);
    
        parser->result_stack = m_new(py_parse_node_t, 1000);
        parser->result_stack_top = 0;
    
        push_rule(parser, rules[wanted_rule], 0);
    
        uint n, i;
        bool backtrack = false;
        rule_t *rule;
        py_token_kind_t tok_kind;
        bool emit_rule;
        bool had_trailing_sep;
    
        for (;;) {
            next_rule:
            if (parser->rule_stack_top == 0) {
                break;
            }
    
            pop_rule(parser, &rule, &i);
            n = rule->act & RULE_ACT_ARG_MASK;
    
            /*
            // debugging
            printf("depth=%d ", parser->rule_stack_top);
            for (int j = 0; j < parser->rule_stack_top; ++j) {
                printf(" ");
            }
            printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack);
            */
    
            switch (rule->act & RULE_ACT_KIND_MASK) {
                case RULE_ACT_OR:
                    if (i > 0 && !backtrack) {
                        goto next_rule;
                    } else {
                        backtrack = false;
                    }
                    for (; i < n - 1; ++i) {
                        switch (rule->arg[i] & RULE_ARG_KIND_MASK) {
                            case RULE_ARG_TOK:
                                if (py_lexer_is_kind(lex, rule->arg[i] & RULE_ARG_ARG_MASK)) {
                                    push_result_token(parser, lex);
                                    py_lexer_to_next(lex);
                                    goto next_rule;
                                }
                                break;
                            case RULE_ARG_RULE:
                                push_rule(parser, rule, i + 1);
                                push_rule_from_arg(parser, rule->arg[i]);
                                goto next_rule;
                            default:
                                assert(0);
                        }
                    }
                    if ((rule->arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                        if (py_lexer_is_kind(lex, rule->arg[i] & RULE_ARG_ARG_MASK)) {
                            push_result_token(parser, lex);
                            py_lexer_to_next(lex);
                        } else {
                            backtrack = true;
                            goto next_rule;
                        }
                    } else {
                        push_rule_from_arg(parser, rule->arg[i]);
                    }
                    break;
    
                case RULE_ACT_AND:
    
                    // failed, backtrack if we can, else syntax error
                    if (backtrack) {
                        assert(i > 0);
                        if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) {
                            // an optional rule that failed, so continue with next arg
                            push_result_node(parser, PY_PARSE_NODE_NULL);
                            backtrack = false;
                        } else {
                            // a mandatory rule that failed, so propagate backtrack
                            if (i > 1) {
                                // already eaten tokens so can't backtrack
                                goto syntax_error;
                            } else {
                                goto next_rule;
                            }
                        }
                    }
    
                    // progress through the rule
                    for (; i < n; ++i) {
                        switch (rule->arg[i] & RULE_ARG_KIND_MASK) {
                            case RULE_ARG_TOK:
                                // need to match a token
                                tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK;
                                if (py_lexer_is_kind(lex, tok_kind)) {
                                    // matched token
                                    if (tok_kind == PY_TOKEN_NAME) {
                                        push_result_token(parser, lex);
                                    }
                                    py_lexer_to_next(lex);
                                } else {
                                    // failed to match token
                                    if (i > 0) {
                                        // already eaten tokens so can't backtrack
                                        goto syntax_error;
                                    } else {
                                        // this rule failed, so backtrack
                                        backtrack = true;
                                        goto next_rule;
                                    }
                                }
                                break;
                            case RULE_ARG_RULE:
                                //if (i + 1 < n) {
                                    push_rule(parser, rule, i + 1);
                                //}
                                push_rule_from_arg(parser, rule->arg[i]);
                                goto next_rule;
                            case RULE_ARG_OPT_RULE:
                                push_rule(parser, rule, i + 1);
                                push_rule_from_arg(parser, rule->arg[i]);
                                goto next_rule;
                            default:
                                assert(0);
                        }
                    }
    
                    assert(i == n);
    
                    // matched the rule, so now build the corresponding parse_node
    
                    // count number of arguments for the parse_node
                    i = 0;
                    emit_rule = false;
                    for (int x = 0; x < n; ++x) {
                        if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                            tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK;
                            if (tok_kind >= PY_TOKEN_NAME) {
                                emit_rule = true;
                            }
                            if (tok_kind == PY_TOKEN_NAME) {
                                // only tokens which were names are pushed to stack
                                i += 1;
                            }
                        } else {
                            // rules are always pushed
                            i += 1;
                        }
                    }
    
                    // always emit these rules, even if they have only 1 argument
                    if (rule->rule_id == RULE_expr_stmt || rule->rule_id == RULE_yield_stmt) {
                        emit_rule = true;
                    }
    
                    // never emit these rules if they have only 1 argument
                    // NOTE: can't put atom_paren here because we need it to distinguisg, for example, [a,b] from [(a,b)]
                    // TODO possibly put varargslist_name, varargslist_equal here as well
                    if (rule->rule_id == RULE_else_stmt || rule->rule_id == RULE_testlist_comp_3b || rule->rule_id == RULE_import_as_names_paren || rule->rule_id == RULE_typedargslist_name || rule->rule_id == RULE_typedargslist_colon || rule->rule_id == RULE_typedargslist_equal || rule->rule_id == RULE_dictorsetmaker_colon || rule->rule_id == RULE_classdef_2 || rule->rule_id == RULE_with_item_as || rule->rule_id == RULE_assert_stmt_extra || rule->rule_id == RULE_as_name || rule->rule_id == RULE_raise_stmt_from || rule->rule_id == RULE_vfpdef) {
                        emit_rule = false;
                    }
    
                    // always emit these rules, and add an extra blank node at the end (to be used by the compiler to store data)
                    if (rule->rule_id == RULE_funcdef || rule->rule_id == RULE_classdef || rule->rule_id == RULE_comp_for || rule->rule_id == RULE_lambdef || rule->rule_id == RULE_lambdef_nocond) {
                        emit_rule = true;
                        push_result_node(parser, PY_PARSE_NODE_NULL);
                        i += 1;
                    }
    
                    int num_not_nil = 0;
                    for (int x = 0; x < i; ++x) {
                        if (peek_result(parser, x) != PY_PARSE_NODE_NULL) {
                            num_not_nil += 1;
                        }
                    }
                    //printf("done and %s n=%d i=%d notnil=%d\n", rule->rule_name, n, i, num_not_nil);
                    if (emit_rule) {
                        push_result_rule(parser, rule, i);
                    } else if (num_not_nil == 0) {
                        push_result_rule(parser, rule, i); // needed for, eg, atom_paren, testlist_comp_3b
                        //result_stack_show(parser);
                        //assert(0);
                    } else if (num_not_nil == 1) {
                        // single result, leave it on stack
                        py_parse_node_t pn = PY_PARSE_NODE_NULL;
                        for (int x = 0; x < i; ++x) {
                            py_parse_node_t pn2 = pop_result(parser);
                            if (pn2 != PY_PARSE_NODE_NULL) {
                                pn = pn2;
                            }
                        }
                        push_result_node(parser, pn);
                    } else {
                        push_result_rule(parser, rule, i);
                    }
                    break;
    
                case RULE_ACT_LIST:
                    // n=2 is: item item*
                    // n=1 is: item (sep item)*
                    // n=3 is: item (sep item)* [sep]
                    if (backtrack) {
                        list_backtrack:
                        had_trailing_sep = false;
                        if (n == 2) {
                            if (i == 1) {
                                // fail on item, first time round; propagate backtrack
                                goto next_rule;
                            } else {
                                // fail on item, in later rounds; finish with this rule
                                backtrack = false;
                            }
                        } else {
                            if (i == 1) {
                                // fail on item, first time round; propagate backtrack
                                goto next_rule;
                            } else if ((i & 1) == 1) {
                                // fail on item, in later rounds; have eaten tokens so can't backtrack
                                if (n == 3) {
                                    // list allows trailing separator; finish parsing list
                                    had_trailing_sep = true;
                                    backtrack = false;
                                } else {
                                    // list doesn't allowing trailing separator; fail
                                    goto syntax_error;
                                }
                            } else {
                                // fail on separator; finish parsing list
                                backtrack = false;
                            }
                        }
                    } else {
                        for (;;) {
                            uint arg = rule->arg[i & 1 & n];
                            switch (arg & RULE_ARG_KIND_MASK) {
                                case RULE_ARG_TOK:
                                    if (py_lexer_is_kind(lex, arg & RULE_ARG_ARG_MASK)) {
                                        if (i & 1 & n) {
                                            // separators which are tokens are not pushed to result stack
                                        } else {
                                            push_result_token(parser, lex);
                                        }
                                        py_lexer_to_next(lex);
                                        // got element of list, so continue parsing list
                                        i += 1;
                                    } else {
                                        // couldn't get element of list
                                        i += 1;
                                        backtrack = true;
                                        goto list_backtrack;
                                    }
                                    break;
                                case RULE_ARG_RULE:
                                    push_rule(parser, rule, i + 1);
                                    push_rule_from_arg(parser, arg);
                                    goto next_rule;
                                default:
                                    assert(0);
                            }
                        }
                    }
                    assert(i >= 1);
    
                    // compute number of elements in list, result in i
                    i -= 1;
                    if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                        // don't count separators when they are tokens
                        i = (i + 1) / 2;
                    }
    
                    if (i == 1) {
                        // list matched single item
                        if (had_trailing_sep) {
                            // if there was a trailing separator, make a list of a single item
                            push_result_rule(parser, rule, i);
                        } else {
                            // just leave single item on stack (ie don't wrap in a list)
                        }
                    } else {
                        //printf("done list %s %d %d\n", rule->rule_name, n, i);
                        push_result_rule(parser, rule, i);
                    }
                    break;
    
                default:
                    assert(0);
            }
        }
        if (!py_lexer_is_kind(lex, PY_TOKEN_END)) {
            py_lexer_show_error(lex, "unexpected token at end:");
            py_token_show(py_lexer_cur(lex));
        }
        //printf("--------------\n");
        //result_stack_show(parser);
        assert(parser->result_stack_top == 1);
        //printf("maximum depth: %d\n", parser->rule_stack_alloc);
        //printf("number of parse nodes allocated: %d\n", num_parse_nodes_allocated);
        return parser->result_stack[0];
    
    syntax_error:
        py_lexer_show_error(lex, "syntax error:");
    #ifdef USE_RULE_NAME
        py_lexer_show_error(lex, rule->rule_name);
    #endif
        py_token_show(py_lexer_cur(lex));
        return PY_PARSE_NODE_NULL;
    }