Skip to content
Snippets Groups Projects
Select Git revision
  • e5635f4ab3d0fd00dd3951865fea82003205dae1
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

runtime.c

Blame
  • runtime.c 51.05 KiB
    /*
     * This file is part of the Micro Python project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2013, 2014 Damien P. George
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <stdio.h>
    #include <string.h>
    #include <assert.h>
    
    #include "py/mpstate.h"
    #include "py/nlr.h"
    #include "py/parsenum.h"
    #include "py/compile.h"
    #include "py/objstr.h"
    #include "py/objtuple.h"
    #include "py/objlist.h"
    #include "py/objmodule.h"
    #include "py/objgenerator.h"
    #include "py/smallint.h"
    #include "py/runtime0.h"
    #include "py/runtime.h"
    #include "py/builtin.h"
    #include "py/stackctrl.h"
    #include "py/gc.h"
    
    #if 0 // print debugging info
    #define DEBUG_PRINT (1)
    #define DEBUG_printf DEBUG_printf
    #define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__)
    #else // don't print debugging info
    #define DEBUG_printf(...) (void)0
    #define DEBUG_OP_printf(...) (void)0
    #endif
    
    const mp_obj_module_t mp_module___main__ = {
        .base = { &mp_type_module },
        .name = MP_QSTR___main__,
        .globals = (mp_obj_dict_t*)&MP_STATE_VM(dict_main),
    };
    
    void mp_init(void) {
        qstr_init();
        mp_stack_ctrl_init();
    
        // no pending exceptions to start with
        MP_STATE_VM(mp_pending_exception) = MP_OBJ_NULL;
    
    #if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF
        mp_init_emergency_exception_buf();
    #endif
    
        // call port specific initialization if any
    #ifdef MICROPY_PORT_INIT_FUNC
        MICROPY_PORT_INIT_FUNC;
    #endif
    
        // optimization disabled by default
        MP_STATE_VM(mp_optimise_value) = 0;
    
        // init global module stuff
        mp_module_init();
    
        // initialise the __main__ module
        mp_obj_dict_init(&MP_STATE_VM(dict_main), 1);
        mp_obj_dict_store(&MP_STATE_VM(dict_main), MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
    
        // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
        MP_STATE_CTX(dict_locals) = MP_STATE_CTX(dict_globals) = &MP_STATE_VM(dict_main);
    
        #if MICROPY_CAN_OVERRIDE_BUILTINS
        // start with no extensions to builtins
        MP_STATE_VM(mp_module_builtins_override_dict) = NULL;
        #endif
    }
    
    void mp_deinit(void) {
        //mp_obj_dict_free(&dict_main);
        mp_module_deinit();
    
        // call port specific deinitialization if any 
    #ifdef MICROPY_PORT_INIT_FUNC
        MICROPY_PORT_DEINIT_FUNC;
    #endif
    }
    
    mp_obj_t mp_load_name(qstr qst) {
        // logic: search locals, globals, builtins
        DEBUG_OP_printf("load name %s\n", qstr_str(qst));
        // If we're at the outer scope (locals == globals), dispatch to load_global right away
        if (MP_STATE_CTX(dict_locals) != MP_STATE_CTX(dict_globals)) {
            mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_CTX(dict_locals)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
            if (elem != NULL) {
                return elem->value;
            }
        }
        return mp_load_global(qst);
    }
    
    mp_obj_t mp_load_global(qstr qst) {
        // logic: search globals, builtins
        DEBUG_OP_printf("load global %s\n", qstr_str(qst));
        mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_CTX(dict_globals)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
        if (elem == NULL) {
            #if MICROPY_CAN_OVERRIDE_BUILTINS
            if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
                // lookup in additional dynamic table of builtins first
                elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
                if (elem != NULL) {
                    return elem->value;
                }
            }
            #endif
            elem = mp_map_lookup((mp_map_t*)&mp_module_builtins_globals.map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
            if (elem == NULL) {
                if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                    nlr_raise(mp_obj_new_exception_msg(&mp_type_NameError,
                        "name not defined"));
                } else {
                    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_NameError,
                        "name '%q' is not defined", qst));
                }
            }
        }
        return elem->value;
    }
    
    mp_obj_t mp_load_build_class(void) {
        DEBUG_OP_printf("load_build_class\n");
        #if MICROPY_CAN_OVERRIDE_BUILTINS
        if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
            // lookup in additional dynamic table of builtins first
            mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP);
            if (elem != NULL) {
                return elem->value;
            }
        }
        #endif
        return (mp_obj_t)&mp_builtin___build_class___obj;
    }
    
    void mp_store_name(qstr qst, mp_obj_t obj) {
        DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qst), obj);
        mp_obj_dict_store(MP_STATE_CTX(dict_locals), MP_OBJ_NEW_QSTR(qst), obj);
    }
    
    void mp_delete_name(qstr qst) {
        DEBUG_OP_printf("delete name %s\n", qstr_str(qst));
        // TODO convert KeyError to NameError if qst not found
        mp_obj_dict_delete(MP_STATE_CTX(dict_locals), MP_OBJ_NEW_QSTR(qst));
    }
    
    void mp_store_global(qstr qst, mp_obj_t obj) {
        DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qst), obj);
        mp_obj_dict_store(MP_STATE_CTX(dict_globals), MP_OBJ_NEW_QSTR(qst), obj);
    }
    
    void mp_delete_global(qstr qst) {
        DEBUG_OP_printf("delete global %s\n", qstr_str(qst));
        // TODO convert KeyError to NameError if qst not found
        mp_obj_dict_delete(MP_STATE_CTX(dict_globals), MP_OBJ_NEW_QSTR(qst));
    }
    
    mp_obj_t mp_unary_op(mp_uint_t op, mp_obj_t arg) {
        DEBUG_OP_printf("unary " UINT_FMT " %p\n", op, arg);
    
        if (MP_OBJ_IS_SMALL_INT(arg)) {
            mp_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
            switch (op) {
                case MP_UNARY_OP_BOOL:
                    return MP_BOOL(val != 0);
                case MP_UNARY_OP_HASH:
                    return arg;
                case MP_UNARY_OP_POSITIVE:
                    return arg;
                case MP_UNARY_OP_NEGATIVE:
                    // check for overflow
                    if (val == MP_SMALL_INT_MIN) {
                        return mp_obj_new_int(-val);
                    } else {
                        return MP_OBJ_NEW_SMALL_INT(-val);
                    }
                case MP_UNARY_OP_INVERT:
                    return MP_OBJ_NEW_SMALL_INT(~val);
                default:
                    assert(0);
                    return arg;
            }
        } else if (op == MP_UNARY_OP_HASH && MP_OBJ_IS_STR_OR_BYTES(arg)) {
            // fast path for hashing str/bytes
            GET_STR_HASH(arg, h);
            return MP_OBJ_NEW_SMALL_INT(h);
        } else {
            mp_obj_type_t *type = mp_obj_get_type(arg);
            if (type->unary_op != NULL) {
                mp_obj_t result = type->unary_op(op, arg);
                if (result != MP_OBJ_NULL) {
                    return result;
                }
            }
            if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
                    "unsupported type for operator"));
            } else {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                    "unsupported type for %q: '%s'",
                    mp_unary_op_method_name[op], mp_obj_get_type_str(arg)));
            }
        }
    }
    
    mp_obj_t mp_binary_op(mp_uint_t op, mp_obj_t lhs, mp_obj_t rhs) {
        DEBUG_OP_printf("binary " UINT_FMT " %p %p\n", op, lhs, rhs);
    
        // TODO correctly distinguish inplace operators for mutable objects
        // lookup logic that CPython uses for +=:
        //   check for implemented +=
        //   then check for implemented +
        //   then check for implemented seq.inplace_concat
        //   then check for implemented seq.concat
        //   then fail
        // note that list does not implement + or +=, so that inplace_concat is reached first for +=
    
        // deal with is
        if (op == MP_BINARY_OP_IS) {
            return MP_BOOL(lhs == rhs);
        }
    
        // deal with == and != for all types
        if (op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) {
            if (mp_obj_equal(lhs, rhs)) {
                if (op == MP_BINARY_OP_EQUAL) {
                    return mp_const_true;
                } else {
                    return mp_const_false;
                }
            } else {
                if (op == MP_BINARY_OP_EQUAL) {
                    return mp_const_false;
                } else {
                    return mp_const_true;
                }
            }
        }
    
        // deal with exception_match for all types
        if (op == MP_BINARY_OP_EXCEPTION_MATCH) {
            // rhs must be issubclass(rhs, BaseException)
            if (mp_obj_is_exception_type(rhs)) {
                if (mp_obj_exception_match(lhs, rhs)) {
                    return mp_const_true;
                } else {
                    return mp_const_false;
                }
            } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_tuple)) {
                mp_obj_tuple_t *tuple = rhs;
                for (mp_uint_t i = 0; i < tuple->len; i++) {
                    rhs = tuple->items[i];
                    if (!mp_obj_is_exception_type(rhs)) {
                        goto unsupported_op;
                    }
                    if (mp_obj_exception_match(lhs, rhs)) {
                        return mp_const_true;
                    }
                }
                return mp_const_false;
            }
            goto unsupported_op;
        }
    
        if (MP_OBJ_IS_SMALL_INT(lhs)) {
            mp_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
            if (MP_OBJ_IS_SMALL_INT(rhs)) {
                mp_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
                // This is a binary operation: lhs_val op rhs_val
                // We need to be careful to handle overflow; see CERT INT32-C
                // Operations that can overflow:
                //      +       result always fits in mp_int_t, then handled by SMALL_INT check
                //      -       result always fits in mp_int_t, then handled by SMALL_INT check
                //      *       checked explicitly
                //      /       if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
                //      %       if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
                //      <<      checked explicitly
                switch (op) {
                    case MP_BINARY_OP_OR:
                    case MP_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
                    case MP_BINARY_OP_XOR:
                    case MP_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
                    case MP_BINARY_OP_AND:
                    case MP_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
                    case MP_BINARY_OP_LSHIFT:
                    case MP_BINARY_OP_INPLACE_LSHIFT: {
                        if (rhs_val < 0) {
                            // negative shift not allowed
                            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
                        } else if (rhs_val >= (mp_int_t)BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) {
                            // left-shift will overflow, so use higher precision integer
                            lhs = mp_obj_new_int_from_ll(lhs_val);
                            goto generic_binary_op;
                        } else {
                            // use standard precision
                            lhs_val <<= rhs_val;
                        }
                        break;
                    }
                    case MP_BINARY_OP_RSHIFT:
                    case MP_BINARY_OP_INPLACE_RSHIFT:
                        if (rhs_val < 0) {
                            // negative shift not allowed
                            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
                        } else {
                            // standard precision is enough for right-shift
                            if (rhs_val >= (mp_int_t)BITS_PER_WORD) {
                                // Shifting to big amounts is underfined behavior
                                // in C and is CPU-dependent; propagate sign bit.
                                rhs_val = BITS_PER_WORD - 1;
                            }
                            lhs_val >>= rhs_val;
                        }
                        break;
                    case MP_BINARY_OP_ADD:
                    case MP_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
                    case MP_BINARY_OP_SUBTRACT:
                    case MP_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
                    case MP_BINARY_OP_MULTIPLY:
                    case MP_BINARY_OP_INPLACE_MULTIPLY: {
    
                        // If long long type exists and is larger than mp_int_t, then
                        // we can use the following code to perform overflow-checked multiplication.
                        // Otherwise (eg in x64 case) we must use mp_small_int_mul_overflow.
                        #if 0
                        // compute result using long long precision
                        long long res = (long long)lhs_val * (long long)rhs_val;
                        if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) {
                            // result overflowed SMALL_INT, so return higher precision integer
                            return mp_obj_new_int_from_ll(res);
                        } else {
                            // use standard precision
                            lhs_val = (mp_int_t)res;
                        }
                        #endif
    
                        if (mp_small_int_mul_overflow(lhs_val, rhs_val)) {
                            // use higher precision
                            lhs = mp_obj_new_int_from_ll(lhs_val);
                            goto generic_binary_op;
                        } else {
                            // use standard precision
                            return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val);
                        }
                        break;
                    }
                    case MP_BINARY_OP_FLOOR_DIVIDE:
                    case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
                        if (rhs_val == 0) {
                            goto zero_division;
                        }
                        lhs_val = mp_small_int_floor_divide(lhs_val, rhs_val);
                        break;
    
                    #if MICROPY_PY_BUILTINS_FLOAT
                    case MP_BINARY_OP_TRUE_DIVIDE:
                    case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
                        if (rhs_val == 0) {
                            goto zero_division;
                        }
                        return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
                    #endif
    
                    case MP_BINARY_OP_MODULO:
                    case MP_BINARY_OP_INPLACE_MODULO: {
                        if (rhs_val == 0) {
                            goto zero_division;
                        }
                        lhs_val = mp_small_int_modulo(lhs_val, rhs_val);
                        break;
                    }
    
                    case MP_BINARY_OP_POWER:
                    case MP_BINARY_OP_INPLACE_POWER:
                        if (rhs_val < 0) {
                            #if MICROPY_PY_BUILTINS_FLOAT
                            lhs = mp_obj_new_float(lhs_val);
                            goto generic_binary_op;
                            #else
                            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative power with no float support"));
                            #endif
                        } else {
                            mp_int_t ans = 1;
                            while (rhs_val > 0) {
                                if (rhs_val & 1) {
                                    if (mp_small_int_mul_overflow(ans, lhs_val)) {
                                        goto power_overflow;
                                    }
                                    ans *= lhs_val;
                                }
                                if (rhs_val == 1) {
                                    break;
                                }
                                rhs_val /= 2;
                                if (mp_small_int_mul_overflow(lhs_val, lhs_val)) {
                                    goto power_overflow;
                                }
                                lhs_val *= lhs_val;
                            }
                            lhs_val = ans;
                        }
                        break;
    
                    power_overflow:
                        // use higher precision
                        lhs = mp_obj_new_int_from_ll(MP_OBJ_SMALL_INT_VALUE(lhs));
                        goto generic_binary_op;
    
                    case MP_BINARY_OP_DIVMOD: {
                        if (rhs_val == 0) {
                            goto zero_division;
                        }
                        // to reduce stack usage we don't pass a temp array of the 2 items
                        mp_obj_tuple_t *tuple = mp_obj_new_tuple(2, NULL);
                        tuple->items[0] = MP_OBJ_NEW_SMALL_INT(mp_small_int_floor_divide(lhs_val, rhs_val));
                        tuple->items[1] = MP_OBJ_NEW_SMALL_INT(mp_small_int_modulo(lhs_val, rhs_val));
                        return tuple;
                    }
    
                    case MP_BINARY_OP_LESS: return MP_BOOL(lhs_val < rhs_val); break;
                    case MP_BINARY_OP_MORE: return MP_BOOL(lhs_val > rhs_val); break;
                    case MP_BINARY_OP_LESS_EQUAL: return MP_BOOL(lhs_val <= rhs_val); break;
                    case MP_BINARY_OP_MORE_EQUAL: return MP_BOOL(lhs_val >= rhs_val); break;
    
                    default:
                        goto unsupported_op;
                }
                // TODO: We just should make mp_obj_new_int() inline and use that
                if (MP_SMALL_INT_FITS(lhs_val)) {
                    return MP_OBJ_NEW_SMALL_INT(lhs_val);
                } else {
                    return mp_obj_new_int(lhs_val);
                }
    #if MICROPY_PY_BUILTINS_FLOAT
            } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_float)) {
                mp_obj_t res = mp_obj_float_binary_op(op, lhs_val, rhs);
                if (res == MP_OBJ_NULL) {
                    goto unsupported_op;
                } else {
                    return res;
                }
    #if MICROPY_PY_BUILTINS_COMPLEX
            } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_complex)) {
                mp_obj_t res = mp_obj_complex_binary_op(op, lhs_val, 0, rhs);
                if (res == MP_OBJ_NULL) {
                    goto unsupported_op;
                } else {
                    return res;
                }
    #endif
    #endif
            }
        }
    
        /* deal with `in`
         *
         * NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch
         * needs to go below with swapped arguments
         */
        if (op == MP_BINARY_OP_IN) {
            mp_obj_type_t *type = mp_obj_get_type(rhs);
            if (type->binary_op != NULL) {
                mp_obj_t res = type->binary_op(op, rhs, lhs);
                if (res != MP_OBJ_NULL) {
                    return res;
                }
            }
            if (type->getiter != NULL) {
                /* second attempt, walk the iterator */
                mp_obj_t iter = mp_getiter(rhs);
                mp_obj_t next;
                while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) {
                    if (mp_obj_equal(next, lhs)) {
                        return mp_const_true;
                    }
                }
                return mp_const_false;
            }
    
            if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
                    "object not iterable"));
            } else {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                    "'%s' object is not iterable", mp_obj_get_type_str(rhs)));
            }
        }
    
        // generic binary_op supplied by type
        mp_obj_type_t *type;
    generic_binary_op:
        type = mp_obj_get_type(lhs);
        if (type->binary_op != NULL) {
            mp_obj_t result = type->binary_op(op, lhs, rhs);
            if (result != MP_OBJ_NULL) {
                return result;
            }
        }
    
        // TODO implement dispatch for reverse binary ops
    
    unsupported_op:
        if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
                "unsupported type for operator"));
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                "unsupported types for %q: '%s', '%s'",
                mp_binary_op_method_name[op], mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs)));
        }
    
    zero_division:
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ZeroDivisionError, "division by zero"));
    }
    
    mp_obj_t mp_call_function_0(mp_obj_t fun) {
        return mp_call_function_n_kw(fun, 0, 0, NULL);
    }
    
    mp_obj_t mp_call_function_1(mp_obj_t fun, mp_obj_t arg) {
        return mp_call_function_n_kw(fun, 1, 0, &arg);
    }
    
    mp_obj_t mp_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
        mp_obj_t args[2];
        args[0] = arg1;
        args[1] = arg2;
        return mp_call_function_n_kw(fun, 2, 0, args);
    }
    
    // args contains, eg: arg0  arg1  key0  value0  key1  value1
    mp_obj_t mp_call_function_n_kw(mp_obj_t fun_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
        // TODO improve this: fun object can specify its type and we parse here the arguments,
        // passing to the function arrays of fixed and keyword arguments
    
        DEBUG_OP_printf("calling function %p(n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", fun_in, n_args, n_kw, args);
    
        // get the type
        mp_obj_type_t *type = mp_obj_get_type(fun_in);
    
        // do the call
        if (type->call != NULL) {
            return type->call(fun_in, n_args, n_kw, args);
        }
    
        if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
                "object not callable"));
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                "'%s' object is not callable", mp_obj_get_type_str(fun_in)));
        }
    }
    
    // args contains: fun  self/NULL  arg(0)  ...  arg(n_args-2)  arg(n_args-1)  kw_key(0)  kw_val(0)  ... kw_key(n_kw-1)  kw_val(n_kw-1)
    // if n_args==0 and n_kw==0 then there are only fun and self/NULL
    mp_obj_t mp_call_method_n_kw(mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
        DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", args[0], args[1], n_args, n_kw, args);
        int adjust = (args[1] == NULL) ? 0 : 1;
        return mp_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust);
    }
    
    // This function only needs to be exposed externally when in stackless mode.
    #if !MICROPY_STACKLESS
    STATIC
    #endif
    void mp_call_prepare_args_n_kw_var(bool have_self, mp_uint_t n_args_n_kw, const mp_obj_t *args, mp_call_args_t *out_args) {
        mp_obj_t fun = *args++;
        mp_obj_t self = MP_OBJ_NULL;
        if (have_self) {
            self = *args++; // may be MP_OBJ_NULL
        }
        uint n_args = n_args_n_kw & 0xff;
        uint n_kw = (n_args_n_kw >> 8) & 0xff;
        mp_obj_t pos_seq = args[n_args + 2 * n_kw]; // may be MP_OBJ_NULL
        mp_obj_t kw_dict = args[n_args + 2 * n_kw + 1]; // may be MP_OBJ_NULL
    
        DEBUG_OP_printf("call method var (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p, seq=%p, dict=%p)\n", fun, self, n_args, n_kw, args, pos_seq, kw_dict);
    
        // We need to create the following array of objects:
        //     args[0 .. n_args]  unpacked(pos_seq)  args[n_args .. n_args + 2 * n_kw]  unpacked(kw_dict)
        // TODO: optimize one day to avoid constructing new arg array? Will be hard.
    
        // The new args array
        mp_obj_t *args2;
        uint args2_alloc;
        uint args2_len = 0;
    
        // Try to get a hint for the size of the kw_dict
        uint kw_dict_len = 0;
        if (kw_dict != MP_OBJ_NULL && MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
            kw_dict_len = mp_obj_dict_len(kw_dict);
        }
    
        // Extract the pos_seq sequence to the new args array.
        // Note that it can be arbitrary iterator.
        if (pos_seq == MP_OBJ_NULL) {
            // no sequence
    
            // allocate memory for the new array of args
            args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len);
            args2 = m_new(mp_obj_t, args2_alloc);
    
            // copy the self
            if (self != MP_OBJ_NULL) {
                args2[args2_len++] = self;
            }
    
            // copy the fixed pos args
            mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
            args2_len += n_args;
    
        } else if (MP_OBJ_IS_TYPE(pos_seq, &mp_type_tuple) || MP_OBJ_IS_TYPE(pos_seq, &mp_type_list)) {
            // optimise the case of a tuple and list
    
            // get the items
            mp_uint_t len;
            mp_obj_t *items;
            mp_obj_get_array(pos_seq, &len, &items);
    
            // allocate memory for the new array of args
            args2_alloc = 1 + n_args + len + 2 * (n_kw + kw_dict_len);
            args2 = m_new(mp_obj_t, args2_alloc);
    
            // copy the self
            if (self != MP_OBJ_NULL) {
                args2[args2_len++] = self;
            }
    
            // copy the fixed and variable position args
            mp_seq_cat(args2 + args2_len, args, n_args, items, len, mp_obj_t);
            args2_len += n_args + len;
    
        } else {
            // generic iterator
    
            // allocate memory for the new array of args
            args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len) + 3;
            args2 = m_new(mp_obj_t, args2_alloc);
    
            // copy the self
            if (self != MP_OBJ_NULL) {
                args2[args2_len++] = self;
            }
    
            // copy the fixed position args
            mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
    
            // extract the variable position args from the iterator
            mp_obj_t iterable = mp_getiter(pos_seq);
            mp_obj_t item;
            while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
                if (args2_len >= args2_alloc) {
                    args2 = m_renew(mp_obj_t, args2, args2_alloc, args2_alloc * 2);
                    args2_alloc *= 2;
                }
                args2[args2_len++] = item;
            }
        }
    
        // The size of the args2 array now is the number of positional args.
        uint pos_args_len = args2_len;
    
        // Copy the fixed kw args.
        mp_seq_copy(args2 + args2_len, args + n_args, 2 * n_kw, mp_obj_t);
        args2_len += 2 * n_kw;
    
        // Extract (key,value) pairs from kw_dict dictionary and append to args2.
        // Note that it can be arbitrary iterator.
        if (kw_dict == MP_OBJ_NULL) {
            // pass
        } else if (MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
            // dictionary
            mp_map_t *map = mp_obj_dict_get_map(kw_dict);
            assert(args2_len + 2 * map->used <= args2_alloc); // should have enough, since kw_dict_len is in this case hinted correctly above
            for (mp_uint_t i = 0; i < map->alloc; i++) {
                if (MP_MAP_SLOT_IS_FILLED(map, i)) {
                    args2[args2_len++] = map->table[i].key;
                    args2[args2_len++] = map->table[i].value;
                }
            }
        } else {
            // generic mapping
            // TODO is calling 'items' on the mapping the correct thing to do here?
            mp_obj_t dest[2];
            mp_load_method(kw_dict, MP_QSTR_items, dest);
            mp_obj_t iterable = mp_getiter(mp_call_method_n_kw(0, 0, dest));
            mp_obj_t item;
            while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
                if (args2_len + 1 >= args2_alloc) {
                    uint new_alloc = args2_alloc * 2;
                    if (new_alloc < 4) {
                        new_alloc = 4;
                    }
                    args2 = m_renew(mp_obj_t, args2, args2_alloc, new_alloc);
                    args2_alloc = new_alloc;
                }
                mp_obj_t *items;
                mp_obj_get_array_fixed_n(item, 2, &items);
                args2[args2_len++] = items[0];
                args2[args2_len++] = items[1];
            }
        }
    
        out_args->fun = fun;
        out_args->args = args2;
        out_args->n_args = pos_args_len;
        out_args->n_kw = (args2_len - pos_args_len) / 2;
        out_args->n_alloc = args2_alloc;
    }
    
    mp_obj_t mp_call_method_n_kw_var(bool have_self, mp_uint_t n_args_n_kw, const mp_obj_t *args) {
        mp_call_args_t out_args;
        mp_call_prepare_args_n_kw_var(have_self, n_args_n_kw, args, &out_args);
    
        mp_obj_t res = mp_call_function_n_kw(out_args.fun, out_args.n_args, out_args.n_kw, out_args.args);
        m_del(mp_obj_t, out_args.args, out_args.n_alloc);
    
        return res;
    }
    
    // unpacked items are stored in reverse order into the array pointed to by items
    void mp_unpack_sequence(mp_obj_t seq_in, mp_uint_t num, mp_obj_t *items) {
        mp_uint_t seq_len;
        if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
            mp_obj_t *seq_items;
            if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) {
                mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
            } else {
                mp_obj_list_get(seq_in, &seq_len, &seq_items);
            }
            if (seq_len < num) {
                goto too_short;
            } else if (seq_len > num) {
                goto too_long;
            }
            for (mp_uint_t i = 0; i < num; i++) {
                items[i] = seq_items[num - 1 - i];
            }
        } else {
            mp_obj_t iterable = mp_getiter(seq_in);
    
            for (seq_len = 0; seq_len < num; seq_len++) {
                mp_obj_t el = mp_iternext(iterable);
                if (el == MP_OBJ_STOP_ITERATION) {
                    goto too_short;
                }
                items[num - 1 - seq_len] = el;
            }
            if (mp_iternext(iterable) != MP_OBJ_STOP_ITERATION) {
                goto too_long;
            }
        }
        return;
    
    too_short:
        if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
                "wrong number of values to unpack"));
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
                "need more than %d values to unpack", seq_len));
        }
    too_long:
        if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
                "wrong number of values to unpack"));
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
                "too many values to unpack (expected %d)", num));
        }
    }
    
    // unpacked items are stored in reverse order into the array pointed to by items
    void mp_unpack_ex(mp_obj_t seq_in, mp_uint_t num_in, mp_obj_t *items) {
        mp_uint_t num_left = num_in & 0xff;
        mp_uint_t num_right = (num_in >> 8) & 0xff;
        DEBUG_OP_printf("unpack ex " UINT_FMT " " UINT_FMT "\n", num_left, num_right);
        mp_uint_t seq_len;
        if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
            mp_obj_t *seq_items;
            if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) {
                mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
            } else {
                if (num_left == 0 && num_right == 0) {
                    // *a, = b # sets a to b if b is a list
                    items[0] = seq_in;
                    return;
                }
                mp_obj_list_get(seq_in, &seq_len, &seq_items);
            }
            if (seq_len < num_left + num_right) {
                goto too_short;
            }
            for (mp_uint_t i = 0; i < num_right; i++) {
                items[i] = seq_items[seq_len - 1 - i];
            }
            items[num_right] = mp_obj_new_list(seq_len - num_left - num_right, seq_items + num_left);
            for (mp_uint_t i = 0; i < num_left; i++) {
                items[num_right + 1 + i] = seq_items[num_left - 1 - i];
            }
        } else {
            // Generic iterable; this gets a bit messy: we unpack known left length to the
            // items destination array, then the rest to a dynamically created list.  Once the
            // iterable is exhausted, we take from this list for the right part of the items.
            // TODO Improve to waste less memory in the dynamically created list.
            mp_obj_t iterable = mp_getiter(seq_in);
            mp_obj_t item;
            for (seq_len = 0; seq_len < num_left; seq_len++) {
                item = mp_iternext(iterable);
                if (item == MP_OBJ_STOP_ITERATION) {
                    goto too_short;
                }
                items[num_left + num_right + 1 - 1 - seq_len] = item;
            }
            mp_obj_list_t *rest = mp_obj_new_list(0, NULL);
            while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
                mp_obj_list_append(rest, item);
            }
            if (rest->len < num_right) {
                goto too_short;
            }
            items[num_right] = rest;
            for (mp_uint_t i = 0; i < num_right; i++) {
                items[num_right - 1 - i] = rest->items[rest->len - num_right + i];
            }
            mp_obj_list_set_len(rest, rest->len - num_right);
        }
        return;
    
    too_short:
        if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
                "wrong number of values to unpack"));
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
                "need more than %d values to unpack", seq_len));
        }
    }
    
    mp_obj_t mp_load_attr(mp_obj_t base, qstr attr) {
        DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
        // use load_method
        mp_obj_t dest[2];
        mp_load_method(base, attr, dest);
        if (dest[1] == MP_OBJ_NULL) {
            // load_method returned just a normal attribute
            return dest[0];
        } else {
            // load_method returned a method, so build a bound method object
            return mp_obj_new_bound_meth(dest[0], dest[1]);
        }
    }
    
    #if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
    
    // The following "checked fun" type is local to the mp_convert_member_lookup
    // function, and serves to check that the first argument to a builtin function
    // has the correct type.
    
    typedef struct _mp_obj_checked_fun_t {
        mp_obj_base_t base;
        const mp_obj_type_t *type;
        mp_obj_t fun;
    } mp_obj_checked_fun_t;
    
    STATIC mp_obj_t checked_fun_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
        mp_obj_checked_fun_t *self = self_in;
        if (n_args > 0) {
            const mp_obj_type_t *arg0_type = mp_obj_get_type(args[0]);
            if (arg0_type != self->type) {
                if (MICROPY_ERROR_REPORTING != MICROPY_ERROR_REPORTING_DETAILED) {
                    nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
                        "argument has wrong type"));
                } else {
                    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                        "argument should be a '%q' not a '%q'", self->type->name, arg0_type->name));
                }
            }
        }
        return mp_call_function_n_kw(self->fun, n_args, n_kw, args);
    }
    
    STATIC const mp_obj_type_t mp_type_checked_fun = {
        { &mp_type_type },
        .name = MP_QSTR_function,
        .call = checked_fun_call,
    };
    
    STATIC mp_obj_t mp_obj_new_checked_fun(const mp_obj_type_t *type, mp_obj_t fun) {
        mp_obj_checked_fun_t *o = m_new_obj(mp_obj_checked_fun_t);
        o->base.type = &mp_type_checked_fun;
        o->type = type;
        o->fun = fun;
        return o;
    }
    
    #endif // MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
    
    // Given a member that was extracted from an instance, convert it correctly
    // and put the result in the dest[] array for a possible method call.
    // Conversion means dealing with static/class methods, callables, and values.
    // see http://docs.python.org/3/howto/descriptor.html
    void mp_convert_member_lookup(mp_obj_t self, const mp_obj_type_t *type, mp_obj_t member, mp_obj_t *dest) {
        if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) {
            // return just the function
            dest[0] = ((mp_obj_static_class_method_t*)member)->fun;
        } else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) {
            // return a bound method, with self being the type of this object
            dest[0] = ((mp_obj_static_class_method_t*)member)->fun;
            dest[1] = (mp_obj_t)type;
        } else if (MP_OBJ_IS_TYPE(member, &mp_type_type)) {
            // Don't try to bind types (even though they're callable)
            dest[0] = member;
        } else if (mp_obj_is_callable(member)) {
            #if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
            if (self == MP_OBJ_NULL && mp_obj_get_type(member) == &mp_type_fun_builtin) {
                // we extracted a builtin method without a first argument, so we must
                // wrap this function in a type checker
                dest[0] = mp_obj_new_checked_fun(type, member);
            } else
            #endif
            {
                // return a bound method, with self being this object
                dest[0] = member;
                dest[1] = self;
            }
        } else {
            // class member is a value, so just return that value
            dest[0] = member;
        }
    }
    
    // no attribute found, returns:     dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL
    // normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL
    // method attribute found, returns: dest[0] == <method>,    dest[1] == <self>
    void mp_load_method_maybe(mp_obj_t obj, qstr attr, mp_obj_t *dest) {
        // clear output to indicate no attribute/method found yet
        dest[0] = MP_OBJ_NULL;
        dest[1] = MP_OBJ_NULL;
    
        // get the type
        mp_obj_type_t *type = mp_obj_get_type(obj);
    
        // look for built-in names
        if (0) {
    #if MICROPY_CPYTHON_COMPAT
        } else if (attr == MP_QSTR___class__) {
            // a.__class__ is equivalent to type(a)
            dest[0] = type;
    #endif
    
        } else if (attr == MP_QSTR___next__ && type->iternext != NULL) {
            dest[0] = (mp_obj_t)&mp_builtin_next_obj;
            dest[1] = obj;
    
        } else if (type->attr != NULL) {
            // this type can do its own load, so call it
            type->attr(obj, attr, dest);
    
        } else if (type->locals_dict != NULL) {
            // generic method lookup
            // this is a lookup in the object (ie not class or type)
            assert(MP_OBJ_IS_TYPE(type->locals_dict, &mp_type_dict)); // Micro Python restriction, for now
            mp_map_t *locals_map = mp_obj_dict_get_map(type->locals_dict);
            mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
            if (elem != NULL) {
                mp_convert_member_lookup(obj, type, elem->value, dest);
            }
        }
    }
    
    void mp_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
        DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));
    
        mp_load_method_maybe(base, attr, dest);
    
        if (dest[0] == MP_OBJ_NULL) {
            // no attribute/method called attr
            if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                nlr_raise(mp_obj_new_exception_msg(&mp_type_AttributeError,
                    "no such attribute"));
            } else {
                // following CPython, we give a more detailed error message for type objects
                if (MP_OBJ_IS_TYPE(base, &mp_type_type)) {
                    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
                        "type object '%q' has no attribute '%q'",
                        ((mp_obj_type_t*)base)->name, attr));
                } else {
                    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
                        "'%s' object has no attribute '%q'",
                        mp_obj_get_type_str(base), attr));
                }
            }
        }
    }
    
    void mp_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
        DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
        mp_obj_type_t *type = mp_obj_get_type(base);
        if (type->attr != NULL) {
            mp_obj_t dest[2] = {MP_OBJ_SENTINEL, value};
            type->attr(base, attr, dest);
            if (dest[0] == MP_OBJ_NULL) {
                // success
                return;
            }
        }
        if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_AttributeError,
                "no such attribute"));
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
                "'%s' object has no attribute '%q'",
                mp_obj_get_type_str(base), attr));
        }
    }
    
    mp_obj_t mp_getiter(mp_obj_t o_in) {
        assert(o_in);
    
        // check for native getiter (corresponds to __iter__)
        mp_obj_type_t *type = mp_obj_get_type(o_in);
        if (type->getiter != NULL) {
            mp_obj_t iter = type->getiter(o_in);
            if (iter != MP_OBJ_NULL) {
                return iter;
            }
        }
    
        // check for __getitem__
        mp_obj_t dest[2];
        mp_load_method_maybe(o_in, MP_QSTR___getitem__, dest);
        if (dest[0] != MP_OBJ_NULL) {
            // __getitem__ exists, create and return an iterator
            return mp_obj_new_getitem_iter(dest);
        }
    
        // object not iterable
        if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
                "object not iterable"));
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                "'%s' object is not iterable", mp_obj_get_type_str(o_in)));
        }
    }
    
    // may return MP_OBJ_STOP_ITERATION as an optimisation instead of raise StopIteration()
    // may also raise StopIteration()
    mp_obj_t mp_iternext_allow_raise(mp_obj_t o_in) {
        mp_obj_type_t *type = mp_obj_get_type(o_in);
        if (type->iternext != NULL) {
            return type->iternext(o_in);
        } else {
            // check for __next__ method
            mp_obj_t dest[2];
            mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
            if (dest[0] != MP_OBJ_NULL) {
                // __next__ exists, call it and return its result
                return mp_call_method_n_kw(0, 0, dest);
            } else {
                if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                    nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
                        "object not an iterator"));
                } else {
                    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                        "'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
                }
            }
        }
    }
    
    // will always return MP_OBJ_STOP_ITERATION instead of raising StopIteration() (or any subclass thereof)
    // may raise other exceptions
    mp_obj_t mp_iternext(mp_obj_t o_in) {
        MP_STACK_CHECK(); // enumerate, filter, map and zip can recursively call mp_iternext
        mp_obj_type_t *type = mp_obj_get_type(o_in);
        if (type->iternext != NULL) {
            return type->iternext(o_in);
        } else {
            // check for __next__ method
            mp_obj_t dest[2];
            mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
            if (dest[0] != MP_OBJ_NULL) {
                // __next__ exists, call it and return its result
                nlr_buf_t nlr;
                if (nlr_push(&nlr) == 0) {
                    mp_obj_t ret = mp_call_method_n_kw(0, 0, dest);
                    nlr_pop();
                    return ret;
                } else {
                    if (mp_obj_is_subclass_fast(mp_obj_get_type(nlr.ret_val), &mp_type_StopIteration)) {
                        return MP_OBJ_STOP_ITERATION;
                    } else {
                        nlr_raise(nlr.ret_val);
                    }
                }
            } else {
                if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                    nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
                        "object not an iterator"));
                } else {
                    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                        "'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
                }
            }
        }
    }
    
    // TODO: Unclear what to do with StopIterarion exception here.
    mp_vm_return_kind_t mp_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) {
        assert((send_value != MP_OBJ_NULL) ^ (throw_value != MP_OBJ_NULL));
        mp_obj_type_t *type = mp_obj_get_type(self_in);
    
        if (type == &mp_type_gen_instance) {
            return mp_obj_gen_resume(self_in, send_value, throw_value, ret_val);
        }
    
        if (type->iternext != NULL && send_value == mp_const_none) {
            mp_obj_t ret = type->iternext(self_in);
            if (ret != MP_OBJ_STOP_ITERATION) {
                *ret_val = ret;
                return MP_VM_RETURN_YIELD;
            } else {
                // Emulate raise StopIteration()
                // Special case, handled in vm.c
                *ret_val = MP_OBJ_NULL;
                return MP_VM_RETURN_NORMAL;
            }
        }
    
        mp_obj_t dest[3]; // Reserve slot for send() arg
    
        if (send_value == mp_const_none) {
            mp_load_method_maybe(self_in, MP_QSTR___next__, dest);
            if (dest[0] != MP_OBJ_NULL) {
                *ret_val = mp_call_method_n_kw(0, 0, dest);
                return MP_VM_RETURN_YIELD;
            }
        }
    
        if (send_value != MP_OBJ_NULL) {
            mp_load_method(self_in, MP_QSTR_send, dest);
            dest[2] = send_value;
            *ret_val = mp_call_method_n_kw(1, 0, dest);
            return MP_VM_RETURN_YIELD;
        }
    
        if (throw_value != MP_OBJ_NULL) {
            if (mp_obj_is_subclass_fast(mp_obj_get_type(throw_value), &mp_type_GeneratorExit)) {
                mp_load_method_maybe(self_in, MP_QSTR_close, dest);
                if (dest[0] != MP_OBJ_NULL) {
                    // TODO: Exceptions raised in close() are not propagated,
                    // printed to sys.stderr
                    *ret_val = mp_call_method_n_kw(0, 0, dest);
                    // We assume one can't "yield" from close()
                    return MP_VM_RETURN_NORMAL;
                }
            }
            mp_load_method_maybe(self_in, MP_QSTR_throw, dest);
            if (dest[0] != MP_OBJ_NULL) {
                *ret_val = mp_call_method_n_kw(1, 0, &throw_value);
                // If .throw() method returned, we assume it's value to yield
                // - any exception would be thrown with nlr_raise().
                return MP_VM_RETURN_YIELD;
            }
            // If there's nowhere to throw exception into, then we assume that object
            // is just incapable to handle it, so any exception thrown into it
            // will be propagated up. This behavior is approved by test_pep380.py
            // test_delegation_of_close_to_non_generator(),
            //  test_delegating_throw_to_non_generator()
            *ret_val = throw_value;
            return MP_VM_RETURN_EXCEPTION;
        }
    
        assert(0);
        return MP_VM_RETURN_NORMAL; // Should be unreachable
    }
    
    mp_obj_t mp_make_raise_obj(mp_obj_t o) {
        DEBUG_printf("raise %p\n", o);
        if (mp_obj_is_exception_type(o)) {
            // o is an exception type (it is derived from BaseException (or is BaseException))
            // create and return a new exception instance by calling o
            // TODO could have an option to disable traceback, then builtin exceptions (eg TypeError)
            // could have const instances in ROM which we return here instead
            return mp_call_function_n_kw(o, 0, 0, NULL);
        } else if (mp_obj_is_exception_instance(o)) {
            // o is an instance of an exception, so use it as the exception
            return o;
        } else {
            // o cannot be used as an exception, so return a type error (which will be raised by the caller)
            return mp_obj_new_exception_msg(&mp_type_TypeError, "exceptions must derive from BaseException");
        }
    }
    
    mp_obj_t mp_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
        DEBUG_printf("import name '%s' level=%d\n", qstr_str(name), MP_OBJ_SMALL_INT_VALUE(level));
    
        // build args array
        mp_obj_t args[5];
        args[0] = MP_OBJ_NEW_QSTR(name);
        args[1] = mp_const_none; // TODO should be globals
        args[2] = mp_const_none; // TODO should be locals
        args[3] = fromlist;
        args[4] = level; // must be 0; we don't yet support other values
    
        // TODO lookup __import__ and call that instead of going straight to builtin implementation
        return mp_builtin___import__(5, args);
    }
    
    mp_obj_t mp_import_from(mp_obj_t module, qstr name) {
        DEBUG_printf("import from %p %s\n", module, qstr_str(name));
    
        mp_obj_t dest[2];
    
        mp_load_method_maybe(module, name, dest);
    
        if (dest[1] != MP_OBJ_NULL) {
            // Hopefully we can't import bound method from an object
    import_error:
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ImportError, "cannot import name %q", name));
        }
    
        if (dest[0] != MP_OBJ_NULL) {
            return dest[0];
        }
    
        // See if it's a package, then can try FS import
        if (!mp_obj_is_package(module)) {
            goto import_error;
        }
    
        mp_load_method_maybe(module, MP_QSTR___name__, dest);
        mp_uint_t pkg_name_len;
        const char *pkg_name = mp_obj_str_get_data(dest[0], &pkg_name_len);
    
        const uint dot_name_len = pkg_name_len + 1 + qstr_len(name);
        char *dot_name = alloca(dot_name_len);
        memcpy(dot_name, pkg_name, pkg_name_len);
        dot_name[pkg_name_len] = '.';
        memcpy(dot_name + pkg_name_len + 1, qstr_str(name), qstr_len(name));
        qstr dot_name_q = qstr_from_strn(dot_name, dot_name_len);
    
        mp_obj_t args[5];
        args[0] = MP_OBJ_NEW_QSTR(dot_name_q);
        args[1] = mp_const_none; // TODO should be globals
        args[2] = mp_const_none; // TODO should be locals
        args[3] = mp_const_true; // Pass sentinel "non empty" value to force returning of leaf module
        args[4] = MP_OBJ_NEW_SMALL_INT(0);
    
        // TODO lookup __import__ and call that instead of going straight to builtin implementation
        return mp_builtin___import__(5, args);
    }
    
    void mp_import_all(mp_obj_t module) {
        DEBUG_printf("import all %p\n", module);
    
        // TODO: Support __all__
        mp_map_t *map = mp_obj_dict_get_map(mp_obj_module_get_globals(module));
        for (mp_uint_t i = 0; i < map->alloc; i++) {
            if (MP_MAP_SLOT_IS_FILLED(map, i)) {
                qstr name = MP_OBJ_QSTR_VALUE(map->table[i].key);
                if (*qstr_str(name) != '_') {
                    mp_store_name(name, map->table[i].value);
                }
            }
        }
    }
    
    // this is implemented in this file so it can optimise access to locals/globals
    mp_obj_t mp_parse_compile_execute(mp_lexer_t *lex, mp_parse_input_kind_t parse_input_kind, mp_obj_dict_t *globals, mp_obj_dict_t *locals) {
        // save context
        mp_obj_dict_t *volatile old_globals = mp_globals_get();
        mp_obj_dict_t *volatile old_locals = mp_locals_get();
    
        // set new context
        mp_globals_set(globals);
        mp_locals_set(locals);
    
        nlr_buf_t nlr;
        if (nlr_push(&nlr) == 0) {
            qstr source_name = lex->source_name;
            mp_parse_node_t pn = mp_parse(lex, parse_input_kind);
            mp_obj_t module_fun = mp_compile(pn, source_name, MP_EMIT_OPT_NONE, false);
    
            mp_obj_t ret;
            if (MICROPY_PY_BUILTINS_COMPILE && globals == NULL) {
                // for compile only, return value is the module function
                ret = module_fun;
            } else {
                // execute module function and get return value
                ret = mp_call_function_0(module_fun);
            }
    
            // finish nlr block, restore context and return value
            nlr_pop();
            mp_globals_set(old_globals);
            mp_locals_set(old_locals);
            return ret;
        } else {
            // exception; restore context and re-raise same exception
            mp_globals_set(old_globals);
            mp_locals_set(old_locals);
            nlr_raise(nlr.ret_val);
        }
    }
    
    void *m_malloc_fail(size_t num_bytes) {
        DEBUG_printf("memory allocation failed, allocating " UINT_FMT " bytes\n", num_bytes);
        if (0) {
            // dummy
        #if MICROPY_ENABLE_GC
        } else if (gc_is_locked()) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_MemoryError,
                                               "memory allocation failed, heap is locked"));
        #endif
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_MemoryError,
                                                    "memory allocation failed, allocating " UINT_FMT " bytes", num_bytes));
        }
    }
    
    NORETURN void mp_not_implemented(const char *msg) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_NotImplementedError, msg));
    }