Skip to content
Snippets Groups Projects
Select Git revision
  • e5cff5b2233317cb7f8cb8465940c4e2f2aa1b9d
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

bytearray1.py

Blame
  • emitnative.c 53.01 KiB
    /*
     * This file is part of the Micro Python project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2013, 2014 Damien P. George
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    // Essentially normal Python has 1 type: Python objects
    // Viper has more than 1 type, and is just a more complicated (a superset of) Python.
    // If you declare everything in Viper as a Python object (ie omit type decls) then
    // it should in principle be exactly the same as Python native.
    // Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc.
    // In practice we won't have a VM but rather do this in asm which is actually very minimal.
    
    // Because it breaks strict Python equivalence it should be a completely separate
    // decorator.  It breaks equivalence because overflow on integers wraps around.
    // It shouldn't break equivalence if you don't use the new types, but since the
    // type decls might be used in normal Python for other reasons, it's probably safest,
    // cleanest and clearest to make it a separate decorator.
    
    // Actually, it does break equivalence because integers default to native integers,
    // not Python objects.
    
    // for x in l[0:8]: can be compiled into a native loop if l has pointer type
    
    #include <stdbool.h>
    #include <stdint.h>
    #include <stdio.h>
    #include <string.h>
    #include <assert.h>
    
    #include "misc.h"
    #include "mpconfig.h"
    #include "qstr.h"
    #include "lexer.h"
    #include "parse.h"
    #include "obj.h"
    #include "emitglue.h"
    #include "scope.h"
    #include "runtime0.h"
    #include "emit.h"
    #include "runtime.h"
    
    #if 0 // print debugging info
    #define DEBUG_PRINT (1)
    #define DEBUG_printf DEBUG_printf
    #else // don't print debugging info
    #define DEBUG_printf(...) (void)0
    #endif
    
    // wrapper around everything in this file
    #if (MICROPY_EMIT_X64 && N_X64) || (MICROPY_EMIT_THUMB && N_THUMB)
    
    #if N_X64
    
    // x64 specific stuff
    
    #include "asmx64.h"
    
    #define REG_LOCAL_1 (REG_RBX)
    #define REG_LOCAL_NUM (1)
    
    #define EXPORT_FUN(name) emit_native_x64_##name
    
    #define REG_TEMP0 (REG_RAX)
    #define REG_TEMP1 (REG_RDI)
    #define REG_TEMP2 (REG_RSI)
    #define ASM_MOV_REG_TO_LOCAL(reg, local_num) asm_x64_mov_r64_to_local(emit->as, (reg), (local_num))
    #define ASM_MOV_IMM_TO_REG(imm, reg) asm_x64_mov_i64_to_r64_optimised(emit->as, (imm), (reg))
    #define ASM_MOV_ALIGNED_IMM_TO_REG(imm, reg) asm_x64_mov_i64_to_r64_aligned(emit->as, (imm), (reg))
    #define ASM_MOV_IMM_TO_LOCAL_USING(imm, local_num, reg_temp) do { asm_x64_mov_i64_to_r64_optimised(emit->as, (imm), (reg_temp)); asm_x64_mov_r64_to_local(emit->as, (reg_temp), (local_num)); } while (false)
    #define ASM_MOV_LOCAL_TO_REG(local_num, reg) asm_x64_mov_local_to_r64(emit->as, (local_num), (reg))
    #define ASM_MOV_REG_TO_REG(reg_src, reg_dest) asm_x64_mov_r64_to_r64(emit->as, (reg_src), (reg_dest))
    #define ASM_MOV_LOCAL_ADDR_TO_REG(local_num, reg) asm_x64_mov_local_addr_to_r64(emit->as, (local_num), (reg))
    
    #elif N_THUMB
    
    // thumb specific stuff
    
    #include "asmthumb.h"
    
    #define REG_LOCAL_1 (REG_R4)
    #define REG_LOCAL_2 (REG_R5)
    #define REG_LOCAL_3 (REG_R6)
    #define REG_LOCAL_NUM (3)
    
    #define EXPORT_FUN(name) emit_native_thumb_##name
    
    #define REG_TEMP0 (REG_R0)
    #define REG_TEMP1 (REG_R1)
    #define REG_TEMP2 (REG_R2)
    #define ASM_MOV_REG_TO_LOCAL(reg, local_num) asm_thumb_mov_local_reg(emit->as, (local_num), (reg))
    #define ASM_MOV_IMM_TO_REG(imm, reg) asm_thumb_mov_reg_i32_optimised(emit->as, (reg), (imm))
    #define ASM_MOV_ALIGNED_IMM_TO_REG(imm, reg) asm_thumb_mov_reg_i32_aligned(emit->as, (reg), (imm))
    #define ASM_MOV_IMM_TO_LOCAL_USING(imm, local_num, reg_temp) do { asm_thumb_mov_reg_i32_optimised(emit->as, (reg_temp), (imm)); asm_thumb_mov_local_reg(emit->as, (local_num), (reg_temp)); } while (false)
    #define ASM_MOV_LOCAL_TO_REG(local_num, reg) asm_thumb_mov_reg_local(emit->as, (reg), (local_num))
    #define ASM_MOV_REG_TO_REG(reg_src, reg_dest) asm_thumb_mov_reg_reg(emit->as, (reg_dest), (reg_src))
    #define ASM_MOV_LOCAL_ADDR_TO_REG(local_num, reg) asm_thumb_mov_reg_local_addr(emit->as, (reg), (local_num))
    
    #endif
    
    typedef enum {
        STACK_VALUE,
        STACK_REG,
        STACK_IMM,
    } stack_info_kind_t;
    
    typedef enum {
        VTYPE_UNBOUND,
        VTYPE_PYOBJ,
        VTYPE_BOOL,
        VTYPE_INT,
        VTYPE_PTR,
        VTYPE_PTR_NONE,
        VTYPE_BUILTIN_V_INT,
    } vtype_kind_t;
    
    typedef struct _stack_info_t {
        vtype_kind_t vtype;
        stack_info_kind_t kind;
        union {
            int u_reg;
            machine_int_t u_imm;
        };
    } stack_info_t;
    
    struct _emit_t {
        int pass;
    
        bool do_viper_types;
    
        uint local_vtype_alloc;
        vtype_kind_t *local_vtype;
    
        uint stack_info_alloc;
        stack_info_t *stack_info;
    
        int stack_start;
        int stack_size;
    
        bool last_emit_was_return_value;
    
        scope_t *scope;
    
    #if N_X64
        asm_x64_t *as;
    #elif N_THUMB
        asm_thumb_t *as;
    #endif
    };
    
    emit_t *EXPORT_FUN(new)(uint max_num_labels) {
        emit_t *emit = m_new0(emit_t, 1);
    #if N_X64
        emit->as = asm_x64_new(max_num_labels);
    #elif N_THUMB
        emit->as = asm_thumb_new(max_num_labels);
    #endif
        return emit;
    }
    
    void EXPORT_FUN(free)(emit_t *emit) {
    #if N_X64
        asm_x64_free(emit->as, false);
    #elif N_THUMB
        asm_thumb_free(emit->as, false);
    #endif
        m_del(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc);
        m_del(stack_info_t, emit->stack_info, emit->stack_info_alloc);
        m_del_obj(emit_t, emit);
    }
    
    STATIC void emit_native_set_viper_types(emit_t *emit, bool do_viper_types) {
        emit->do_viper_types = do_viper_types;
    }
    
    STATIC void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) {
        emit->pass = pass;
        emit->stack_start = 0;
        emit->stack_size = 0;
        emit->last_emit_was_return_value = false;
        emit->scope = scope;
    
        // allocate memory for keeping track of the types of locals
        if (emit->local_vtype_alloc < scope->num_locals) {
            emit->local_vtype = m_renew(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc, scope->num_locals);
            emit->local_vtype_alloc = scope->num_locals;
        }
    
        // allocate memory for keeping track of the objects on the stack
        // XXX don't know stack size on entry, and it should be maximum over all scopes
        if (emit->stack_info == NULL) {
            emit->stack_info_alloc = scope->stack_size + 50;
            emit->stack_info = m_new(stack_info_t, emit->stack_info_alloc);
        }
    
        if (emit->do_viper_types) {
            // TODO set types of arguments based on type signature
            for (int i = 0; i < emit->local_vtype_alloc; i++) {
                emit->local_vtype[i] = VTYPE_UNBOUND;
            }
            for (int i = 0; i < emit->stack_info_alloc; i++) {
                emit->stack_info[i].kind = STACK_VALUE;
                emit->stack_info[i].vtype = VTYPE_UNBOUND;
            }
        } else {
            for (int i = 0; i < emit->local_vtype_alloc; i++) {
                emit->local_vtype[i] = VTYPE_PYOBJ;
            }
            for (int i = 0; i < emit->stack_info_alloc; i++) {
                emit->stack_info[i].kind = STACK_VALUE;
                emit->stack_info[i].vtype = VTYPE_PYOBJ;
            }
        }
    
    #if N_X64
        asm_x64_start_pass(emit->as, pass == MP_PASS_EMIT ? ASM_X64_PASS_EMIT : ASM_X64_PASS_COMPUTE);
    #elif N_THUMB
        asm_thumb_start_pass(emit->as, pass == MP_PASS_EMIT ? ASM_THUMB_PASS_EMIT : ASM_THUMB_PASS_COMPUTE);
    #endif
    
        // entry to function
        int num_locals = 0;
        if (pass > MP_PASS_SCOPE) {
            num_locals = scope->num_locals - REG_LOCAL_NUM;
            if (num_locals < 0) {
                num_locals = 0;
            }
            emit->stack_start = num_locals;
            num_locals += scope->stack_size;
        }
    #if N_X64
        asm_x64_entry(emit->as, num_locals);
    #elif N_THUMB
        asm_thumb_entry(emit->as, num_locals);
    #endif
    
        // initialise locals from parameters
    #if N_X64
        for (int i = 0; i < scope->num_pos_args; i++) {
            if (i == 0) {
                asm_x64_mov_r64_to_r64(emit->as, REG_ARG_1, REG_LOCAL_1);
            } else if (i == 1) {
                asm_x64_mov_r64_to_local(emit->as, REG_ARG_2, i - REG_LOCAL_NUM);
            } else if (i == 2) {
                asm_x64_mov_r64_to_local(emit->as, REG_ARG_3, i - REG_LOCAL_NUM);
            } else {
                // TODO not implemented
                assert(0);
            }
        }
    #elif N_THUMB
        for (int i = 0; i < scope->num_pos_args; i++) {
            if (i == 0) {
                asm_thumb_mov_reg_reg(emit->as, REG_LOCAL_1, REG_ARG_1);
            } else if (i == 1) {
                asm_thumb_mov_reg_reg(emit->as, REG_LOCAL_2, REG_ARG_2);
            } else if (i == 2) {
                asm_thumb_mov_reg_reg(emit->as, REG_LOCAL_3, REG_ARG_3);
            } else if (i == 3) {
                asm_thumb_mov_local_reg(emit->as, i - REG_LOCAL_NUM, REG_ARG_4);
            } else {
                // TODO not implemented
                assert(0);
            }
        }
    
        asm_thumb_mov_reg_i32(emit->as, REG_R7, (machine_uint_t)mp_fun_table);
    #endif
    }
    
    STATIC void emit_native_end_pass(emit_t *emit) {
    #if N_X64
        if (!emit->last_emit_was_return_value) {
            asm_x64_exit(emit->as);
        }
        asm_x64_end_pass(emit->as);
    #elif N_THUMB
        if (!emit->last_emit_was_return_value) {
            asm_thumb_exit(emit->as);
        }
        asm_thumb_end_pass(emit->as);
    #endif
    
        // check stack is back to zero size
        if (emit->stack_size != 0) {
            printf("ERROR: stack size not back to zero; got %d\n", emit->stack_size);
        }
    
        if (emit->pass == MP_PASS_EMIT) {
    #if N_X64
            void *f = asm_x64_get_code(emit->as);
            mp_emit_glue_assign_native(emit->scope->raw_code, emit->do_viper_types ? MP_CODE_NATIVE_VIPER : MP_CODE_NATIVE_PY, f, asm_x64_get_code_size(emit->as), emit->scope->num_pos_args);
    #elif N_THUMB
            void *f = asm_thumb_get_code(emit->as);
            mp_emit_glue_assign_native(emit->scope->raw_code, emit->do_viper_types ? MP_CODE_NATIVE_VIPER : MP_CODE_NATIVE_PY, f, asm_thumb_get_code_size(emit->as), emit->scope->num_pos_args);
    #endif
        }
    }
    
    STATIC bool emit_native_last_emit_was_return_value(emit_t *emit) {
        return emit->last_emit_was_return_value;
    }
    
    STATIC void emit_native_adjust_stack_size(emit_t *emit, int delta) {
        emit->stack_size += delta;
    }
    
    STATIC void emit_native_set_source_line(emit_t *emit, int source_line) {
    }
    
    STATIC void adjust_stack(emit_t *emit, int stack_size_delta) {
        DEBUG_printf("adjust stack: stack:%d + delta:%d\n", emit->stack_size, stack_size_delta);
        assert((int)emit->stack_size + stack_size_delta >= 0);
        emit->stack_size += stack_size_delta;
        if (emit->pass > MP_PASS_SCOPE && emit->stack_size > emit->scope->stack_size) {
            emit->scope->stack_size = emit->stack_size;
        }
    }
    
    /*
    STATIC void emit_pre_raw(emit_t *emit, int stack_size_delta) {
        adjust_stack(emit, stack_size_delta);
        emit->last_emit_was_return_value = false;
    }
    */
    
    // this must be called at start of emit functions
    STATIC void emit_native_pre(emit_t *emit) {
        emit->last_emit_was_return_value = false;
        // settle the stack
        /*
        if (regs_needed != 0) {
            for (int i = 0; i < emit->stack_size; i++) {
                switch (emit->stack_info[i].kind) {
                    case STACK_VALUE:
                        break;
    
                    case STACK_REG:
                        // TODO only push reg if in regs_needed
                        emit->stack_info[i].kind = STACK_VALUE;
                        ASM_MOV_REG_TO_LOCAL(emit->stack_info[i].u_reg, emit->stack_start + i);
                        break;
    
                    case STACK_IMM:
                        // don't think we ever need to push imms for settling
                        //ASM_MOV_IMM_TO_LOCAL(emit->last_imm, emit->stack_start + i);
                        break;
                }
            }
        }
        */
    }
    
    STATIC vtype_kind_t peek_vtype(emit_t *emit) {
        return emit->stack_info[emit->stack_size - 1].vtype;
    }
    
    // pos=1 is TOS, pos=2 is next, etc
    // use pos=0 for no skipping
    STATIC void need_reg_single(emit_t *emit, int reg_needed, int skip_stack_pos) {
        skip_stack_pos = emit->stack_size - skip_stack_pos;
        for (int i = 0; i < emit->stack_size; i++) {
            if (i != skip_stack_pos) {
                stack_info_t *si = &emit->stack_info[i];
                if (si->kind == STACK_REG && si->u_reg == reg_needed) {
                    si->kind = STACK_VALUE;
                    ASM_MOV_REG_TO_LOCAL(si->u_reg, emit->stack_start + i);
                }
            }
        }
    }
    
    STATIC void need_reg_all(emit_t *emit) {
        for (int i = 0; i < emit->stack_size; i++) {
            stack_info_t *si = &emit->stack_info[i];
            if (si->kind == STACK_REG) {
                si->kind = STACK_VALUE;
                ASM_MOV_REG_TO_LOCAL(si->u_reg, emit->stack_start + i);
            }
        }
    }
    
    STATIC void need_stack_settled(emit_t *emit) {
        for (int i = 0; i < emit->stack_size; i++) {
            stack_info_t *si = &emit->stack_info[i];
            if (si->kind == STACK_REG) {
                si->kind = STACK_VALUE;
                ASM_MOV_REG_TO_LOCAL(si->u_reg, emit->stack_start + i);
            }
        }
        for (int i = 0; i < emit->stack_size; i++) {
            stack_info_t *si = &emit->stack_info[i];
            if (si->kind == STACK_IMM) {
                ASM_MOV_IMM_TO_LOCAL_USING(si->u_imm, emit->stack_start + i, REG_TEMP0);
            }
        }
    }
    
    // pos=1 is TOS, pos=2 is next, etc
    STATIC void emit_access_stack(emit_t *emit, int pos, vtype_kind_t *vtype, int reg_dest) {
        need_reg_single(emit, reg_dest, pos);
        stack_info_t *si = &emit->stack_info[emit->stack_size - pos];
        *vtype = si->vtype;
        switch (si->kind) {
            case STACK_VALUE:
                ASM_MOV_LOCAL_TO_REG(emit->stack_start + emit->stack_size - pos, reg_dest);
                break;
    
            case STACK_REG:
                if (si->u_reg != reg_dest) {
                    ASM_MOV_REG_TO_REG(si->u_reg, reg_dest);
                }
                break;
    
            case STACK_IMM:
                ASM_MOV_IMM_TO_REG(si->u_imm, reg_dest);
                break;
        }
    }
    
    STATIC void emit_pre_pop_discard(emit_t *emit, vtype_kind_t *vtype) {
        emit->last_emit_was_return_value = false;
        adjust_stack(emit, -1);
    }
    
    STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) {
        emit->last_emit_was_return_value = false;
        emit_access_stack(emit, 1, vtype, reg_dest);
        adjust_stack(emit, -1);
    }
    
    STATIC void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) {
        emit_pre_pop_reg(emit, vtypea, rega);
        emit_pre_pop_reg(emit, vtypeb, regb);
    }
    
    STATIC void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) {
        emit_pre_pop_reg(emit, vtypea, rega);
        emit_pre_pop_reg(emit, vtypeb, regb);
        emit_pre_pop_reg(emit, vtypec, regc);
    }
    
    STATIC void emit_post(emit_t *emit) {
    }
    
    STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) {
        stack_info_t *si = &emit->stack_info[emit->stack_size];
        si->vtype = vtype;
        si->kind = STACK_REG;
        si->u_reg = reg;
        adjust_stack(emit, 1);
    }
    
    STATIC void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, machine_int_t imm) {
        stack_info_t *si = &emit->stack_info[emit->stack_size];
        si->vtype = vtype;
        si->kind = STACK_IMM;
        si->u_imm = imm;
        adjust_stack(emit, 1);
    }
    
    STATIC void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) {
        emit_post_push_reg(emit, vtypea, rega);
        emit_post_push_reg(emit, vtypeb, regb);
    }
    
    STATIC void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) {
        emit_post_push_reg(emit, vtypea, rega);
        emit_post_push_reg(emit, vtypeb, regb);
        emit_post_push_reg(emit, vtypec, regc);
    }
    
    STATIC void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) {
        emit_post_push_reg(emit, vtypea, rega);
        emit_post_push_reg(emit, vtypeb, regb);
        emit_post_push_reg(emit, vtypec, regc);
        emit_post_push_reg(emit, vtyped, regd);
    }
    
    // vtype of all n_pop objects is VTYPE_PYOBJ
    // does not use any temporary registers (but may use reg_dest before loading it with stack pointer)
    // TODO this needs some thinking for viper code
    STATIC void emit_get_stack_pointer_to_reg_for_pop(emit_t *emit, int reg_dest, int n_pop) {
        need_reg_all(emit);
        for (int i = 0; i < n_pop; i++) {
            stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i];
            // must push any imm's to stack
            // must convert them to VTYPE_PYOBJ for viper code
            if (si->kind == STACK_IMM) {
                si->kind = STACK_VALUE;
                switch (si->vtype) {
                    case VTYPE_PYOBJ:
                        ASM_MOV_IMM_TO_LOCAL_USING(si->u_imm, emit->stack_start + emit->stack_size - 1 - i, reg_dest);
                        break;
                    case VTYPE_BOOL:
                        si->vtype = VTYPE_PYOBJ;
                        if (si->u_imm == 0) {
                            ASM_MOV_IMM_TO_LOCAL_USING((machine_uint_t)mp_const_false, emit->stack_start + emit->stack_size - 1 - i, reg_dest);
                        } else {
                            ASM_MOV_IMM_TO_LOCAL_USING((machine_uint_t)mp_const_true, emit->stack_start + emit->stack_size - 1 - i, reg_dest);
                        }
                        break;
                    case VTYPE_INT:
                        si->vtype = VTYPE_PYOBJ;
                        ASM_MOV_IMM_TO_LOCAL_USING((si->u_imm << 1) | 1, emit->stack_start + emit->stack_size - 1 - i, reg_dest);
                        break;
                    default:
                        // not handled
                        assert(0);
                }
            }
            assert(si->kind == STACK_VALUE);
            assert(si->vtype == VTYPE_PYOBJ);
        }
        adjust_stack(emit, -n_pop);
        ASM_MOV_LOCAL_ADDR_TO_REG(emit->stack_start + emit->stack_size, reg_dest);
    }
    
    // vtype of all n_push objects is VTYPE_PYOBJ
    STATIC void emit_get_stack_pointer_to_reg_for_push(emit_t *emit, int reg_dest, int n_push) {
        need_reg_all(emit);
        for (int i = 0; i < n_push; i++) {
            emit->stack_info[emit->stack_size + i].kind = STACK_VALUE;
            emit->stack_info[emit->stack_size + i].vtype = VTYPE_PYOBJ;
        }
        ASM_MOV_LOCAL_ADDR_TO_REG(emit->stack_start + emit->stack_size, reg_dest);
        adjust_stack(emit, n_push);
    }
    
    STATIC void emit_call(emit_t *emit, mp_fun_kind_t fun_kind, void *fun) {
        need_reg_all(emit);
    #if N_X64
        asm_x64_call_ind(emit->as, fun, REG_RAX);
    #elif N_THUMB
        asm_thumb_bl_ind(emit->as, mp_fun_table[fun_kind], fun_kind, REG_R3);
    #endif
    }
    
    STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, void *fun, machine_int_t arg_val, int arg_reg) {
        need_reg_all(emit);
        ASM_MOV_IMM_TO_REG(arg_val, arg_reg);
    #if N_X64
        asm_x64_call_ind(emit->as, fun, REG_RAX);
    #elif N_THUMB
        asm_thumb_bl_ind(emit->as, mp_fun_table[fun_kind], fun_kind, REG_R3);
    #endif
    }
    
    // the first arg is stored in the code aligned on a machine_uint_t boundary
    STATIC void emit_call_with_imm_arg_aligned(emit_t *emit, mp_fun_kind_t fun_kind, void *fun, machine_int_t arg_val, int arg_reg) {
        need_reg_all(emit);
        ASM_MOV_ALIGNED_IMM_TO_REG(arg_val, arg_reg);
    #if N_X64
        asm_x64_call_ind(emit->as, fun, REG_RAX);
    #elif N_THUMB
        asm_thumb_bl_ind(emit->as, mp_fun_table[fun_kind], fun_kind, REG_R3);
    #endif
    }
    
    STATIC void emit_call_with_2_imm_args(emit_t *emit, mp_fun_kind_t fun_kind, void *fun, machine_int_t arg_val1, int arg_reg1, machine_int_t arg_val2, int arg_reg2) {
        need_reg_all(emit);
        ASM_MOV_IMM_TO_REG(arg_val1, arg_reg1);
        ASM_MOV_IMM_TO_REG(arg_val2, arg_reg2);
    #if N_X64
        asm_x64_call_ind(emit->as, fun, REG_RAX);
    #elif N_THUMB
        asm_thumb_bl_ind(emit->as, mp_fun_table[fun_kind], fun_kind, REG_R3);
    #endif
    }
    
    // the first arg is stored in the code aligned on a machine_uint_t boundary
    STATIC void emit_call_with_3_imm_args_and_first_aligned(emit_t *emit, mp_fun_kind_t fun_kind, void *fun, machine_int_t arg_val1, int arg_reg1, machine_int_t arg_val2, int arg_reg2, machine_int_t arg_val3, int arg_reg3) {
        need_reg_all(emit);
        ASM_MOV_ALIGNED_IMM_TO_REG(arg_val1, arg_reg1);
        ASM_MOV_IMM_TO_REG(arg_val2, arg_reg2);
        ASM_MOV_IMM_TO_REG(arg_val3, arg_reg3);
    #if N_X64
        asm_x64_call_ind(emit->as, fun, REG_RAX);
    #elif N_THUMB
        asm_thumb_bl_ind(emit->as, mp_fun_table[fun_kind], fun_kind, REG_R3);
    #endif
    }
    
    STATIC void emit_native_load_id(emit_t *emit, qstr qstr) {
        // check for built-ins
        if (strcmp(qstr_str(qstr), "v_int") == 0) {
            assert(0);
            emit_native_pre(emit);
            //emit_post_push_blank(emit, VTYPE_BUILTIN_V_INT);
    
        // not a built-in, so do usual thing
        } else {
            emit_common_load_id(emit, &EXPORT_FUN(method_table), emit->scope, qstr);
        }
    }
    
    STATIC void emit_native_store_id(emit_t *emit, qstr qstr) {
        // TODO check for built-ins and disallow
        emit_common_store_id(emit, &EXPORT_FUN(method_table), emit->scope, qstr);
    }
    
    STATIC void emit_native_delete_id(emit_t *emit, qstr qstr) {
        // TODO check for built-ins and disallow
        emit_common_delete_id(emit, &EXPORT_FUN(method_table), emit->scope, qstr);
    }
    
    STATIC void emit_native_label_assign(emit_t *emit, uint l) {
        emit_native_pre(emit);
        // need to commit stack because we can jump here from elsewhere
        need_stack_settled(emit);
    #if N_X64
        asm_x64_label_assign(emit->as, l);
    #elif N_THUMB
        asm_thumb_label_assign(emit->as, l);
    #endif
        emit_post(emit);
    }
    
    STATIC void emit_native_import_name(emit_t *emit, qstr qst) {
        DEBUG_printf("import_name %s\n", qstr_str(qst));
        vtype_kind_t vtype_fromlist;
        vtype_kind_t vtype_level;
        emit_pre_pop_reg_reg(emit, &vtype_fromlist, REG_ARG_2, &vtype_level, REG_ARG_3); // arg2 = fromlist, arg3 = level
        assert(vtype_fromlist == VTYPE_PYOBJ);
        assert(vtype_level == VTYPE_PYOBJ);
        emit_call_with_imm_arg(emit, MP_F_IMPORT_NAME, mp_import_name, qst, REG_ARG_1); // arg1 = import name
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_import_from(emit_t *emit, qstr qst) {
        DEBUG_printf("import_from %s\n", qstr_str(qst));
        emit_native_pre(emit);
        vtype_kind_t vtype_module;
        emit_access_stack(emit, 1, &vtype_module, REG_ARG_1); // arg1 = module
        assert(vtype_module == VTYPE_PYOBJ);
        emit_call_with_imm_arg(emit, MP_F_IMPORT_FROM, mp_import_from, qst, REG_ARG_2); // arg2 = import name
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_import_star(emit_t *emit) {
        DEBUG_printf("import_star\n");
        vtype_kind_t vtype_module;
        emit_pre_pop_reg(emit, &vtype_module, REG_ARG_1); // arg1 = module
        assert(vtype_module == VTYPE_PYOBJ);
        emit_call(emit, MP_F_IMPORT_ALL, mp_import_all);
        emit_post(emit);
    }
    
    STATIC void emit_native_load_const_tok(emit_t *emit, mp_token_kind_t tok) {
        DEBUG_printf("load_const_tok %d\n", tok);
        emit_native_pre(emit);
        int vtype;
        machine_uint_t val;
        if (emit->do_viper_types) {
            switch (tok) {
                case MP_TOKEN_KW_NONE: vtype = VTYPE_PTR_NONE; val = 0; break;
                case MP_TOKEN_KW_FALSE: vtype = VTYPE_BOOL; val = 0; break;
                case MP_TOKEN_KW_TRUE: vtype = VTYPE_BOOL; val = 1; break;
                default: assert(0); vtype = 0; val = 0; // shouldn't happen
            }
        } else {
            vtype = VTYPE_PYOBJ;
            switch (tok) {
                case MP_TOKEN_KW_NONE: val = (machine_uint_t)mp_const_none; break;
                case MP_TOKEN_KW_FALSE: val = (machine_uint_t)mp_const_false; break;
                case MP_TOKEN_KW_TRUE: val = (machine_uint_t)mp_const_true; break;
                default: assert(0); vtype = 0; val = 0; // shouldn't happen
            }
        }
        emit_post_push_imm(emit, vtype, val);
    }
    
    STATIC void emit_native_load_const_small_int(emit_t *emit, machine_int_t arg) {
        DEBUG_printf("load_const_small_int %d\n", arg);
        emit_native_pre(emit);
        if (emit->do_viper_types) {
            emit_post_push_imm(emit, VTYPE_INT, arg);
        } else {
            emit_post_push_imm(emit, VTYPE_PYOBJ, (arg << 1) | 1);
        }
    }
    
    STATIC void emit_native_load_const_int(emit_t *emit, qstr qst) {
        DEBUG_printf("load_const_int %s\n", qstr_str(st));
        // for viper: load integer, check fits in 32 bits
        emit_native_pre(emit);
        emit_call_with_imm_arg(emit, MP_F_LOAD_CONST_INT, mp_obj_new_int_from_qstr, qst, REG_ARG_1);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_load_const_dec(emit_t *emit, qstr qstr) {
        // for viper, a float/complex is just a Python object
        emit_native_pre(emit);
        emit_call_with_imm_arg(emit, MP_F_LOAD_CONST_DEC, mp_load_const_dec, qstr, REG_ARG_1);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_load_const_str(emit_t *emit, qstr qstr, bool bytes) {
        emit_native_pre(emit);
        if (emit->do_viper_types) {
            // not implemented properly
            // load a pointer to the asciiz string?
            assert(0);
            emit_post_push_imm(emit, VTYPE_PTR, (machine_uint_t)qstr_str(qstr));
        } else {
            emit_call_with_imm_arg(emit, MP_F_LOAD_CONST_STR, mp_load_const_str, qstr, REG_ARG_1);
            emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
        }
    }
    
    STATIC void emit_native_load_null(emit_t *emit) {
        emit_native_pre(emit);
        emit_post_push_imm(emit, VTYPE_PYOBJ, 0);
    }
    
    STATIC void emit_native_load_fast(emit_t *emit, qstr qstr, uint id_flags, int local_num) {
        vtype_kind_t vtype = emit->local_vtype[local_num];
        if (vtype == VTYPE_UNBOUND) {
            printf("ViperTypeError: local %s used before type known\n", qstr_str(qstr));
        }
        emit_native_pre(emit);
    #if N_X64
        if (local_num == 0) {
            emit_post_push_reg(emit, vtype, REG_LOCAL_1);
        } else {
            need_reg_single(emit, REG_RAX, 0);
            asm_x64_mov_local_to_r64(emit->as, local_num - REG_LOCAL_NUM, REG_RAX);
            emit_post_push_reg(emit, vtype, REG_RAX);
        }
    #elif N_THUMB
        if (local_num == 0) {
            emit_post_push_reg(emit, vtype, REG_LOCAL_1);
        } else if (local_num == 1) {
            emit_post_push_reg(emit, vtype, REG_LOCAL_2);
        } else if (local_num == 2) {
            emit_post_push_reg(emit, vtype, REG_LOCAL_3);
        } else {
            need_reg_single(emit, REG_R0, 0);
            asm_thumb_mov_reg_local(emit->as, REG_R0, local_num - REG_LOCAL_NUM);
            emit_post_push_reg(emit, vtype, REG_R0);
        }
    #endif
    }
    
    STATIC void emit_native_load_deref(emit_t *emit, qstr qstr, int local_num) {
        // not implemented
        // in principle could support this quite easily (ldr r0, [r0, #0]) and then get closed over variables!
        assert(0);
    }
    
    STATIC void emit_native_load_name(emit_t *emit, qstr qstr) {
        emit_native_pre(emit);
        emit_call_with_imm_arg(emit, MP_F_LOAD_NAME, mp_load_name, qstr, REG_ARG_1);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_load_global(emit_t *emit, qstr qstr) {
        emit_native_pre(emit);
        emit_call_with_imm_arg(emit, MP_F_LOAD_GLOBAL, mp_load_global, qstr, REG_ARG_1);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_load_attr(emit_t *emit, qstr qstr) {
        // depends on type of subject:
        //  - integer, function, pointer to integers: error
        //  - pointer to structure: get member, quite easy
        //  - Python object: call mp_load_attr, and needs to be typed to convert result
        vtype_kind_t vtype_base;
        emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
        assert(vtype_base == VTYPE_PYOBJ);
        emit_call_with_imm_arg(emit, MP_F_LOAD_ATTR, mp_load_attr, qstr, REG_ARG_2); // arg2 = attribute name
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_load_method(emit_t *emit, qstr qstr) {
        vtype_kind_t vtype_base;
        emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
        assert(vtype_base == VTYPE_PYOBJ);
        emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
        emit_call_with_imm_arg(emit, MP_F_LOAD_METHOD, mp_load_method, qstr, REG_ARG_2); // arg2 = method name
    }
    
    STATIC void emit_native_load_build_class(emit_t *emit) {
        emit_native_pre(emit);
        emit_call(emit, MP_F_LOAD_BUILD_CLASS, mp_load_build_class);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_load_subscr(emit_t *emit) {
        vtype_kind_t vtype_lhs, vtype_rhs;
        emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_2, &vtype_lhs, REG_ARG_1);
        if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) {
            emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, mp_obj_subscr, (machine_uint_t)MP_OBJ_SENTINEL, REG_ARG_3);
            emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
        } else {
            printf("ViperTypeError: can't do subscr of types %d and %d\n", vtype_lhs, vtype_rhs);
            assert(0);
        }
    }
    
    STATIC void emit_native_store_fast(emit_t *emit, qstr qstr, int local_num) {
        vtype_kind_t vtype;
    #if N_X64
        if (local_num == 0) {
            emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1);
        } else {
            emit_pre_pop_reg(emit, &vtype, REG_RAX);
            asm_x64_mov_r64_to_local(emit->as, REG_RAX, local_num - REG_LOCAL_NUM);
        }
    #elif N_THUMB
        if (local_num == 0) {
            emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1);
        } else if (local_num == 1) {
            emit_pre_pop_reg(emit, &vtype, REG_LOCAL_2);
        } else if (local_num == 2) {
            emit_pre_pop_reg(emit, &vtype, REG_LOCAL_3);
        } else {
            emit_pre_pop_reg(emit, &vtype, REG_R0);
            asm_thumb_mov_local_reg(emit->as, local_num - REG_LOCAL_NUM, REG_R0);
        }
    #endif
    
        emit_post(emit);
    
        // check types
        if (emit->local_vtype[local_num] == VTYPE_UNBOUND) {
            // first time this local is assigned, so give it a type of the object stored in it
            emit->local_vtype[local_num] = vtype;
        } else if (emit->local_vtype[local_num] != vtype) {
            // type of local is not the same as object stored in it
            printf("ViperTypeError: type mismatch, local %s has type %d but source object has type %d\n", qstr_str(qstr), emit->local_vtype[local_num], vtype);
        }
    }
    
    STATIC void emit_native_store_deref(emit_t *emit, qstr qstr, int local_num) {
        // not implemented
        assert(0);
    }
    
    STATIC void emit_native_store_name(emit_t *emit, qstr qstr) {
        // mp_store_name, but needs conversion of object (maybe have mp_viper_store_name(obj, type))
        vtype_kind_t vtype;
        emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
        assert(vtype == VTYPE_PYOBJ);
        emit_call_with_imm_arg(emit, MP_F_STORE_NAME, mp_store_name, qstr, REG_ARG_1); // arg1 = name
        emit_post(emit);
    }
    
    STATIC void emit_native_store_global(emit_t *emit, qstr qstr) {
        // not implemented
        assert(0);
    }
    
    STATIC void emit_native_store_attr(emit_t *emit, qstr qstr) {
        vtype_kind_t vtype_base, vtype_val;
        emit_pre_pop_reg_reg(emit, &vtype_base, REG_ARG_1, &vtype_val, REG_ARG_3); // arg1 = base, arg3 = value
        assert(vtype_base == VTYPE_PYOBJ);
        assert(vtype_val == VTYPE_PYOBJ);
        emit_call_with_imm_arg(emit, MP_F_STORE_ATTR, mp_store_attr, qstr, REG_ARG_2); // arg2 = attribute name
        emit_post(emit);
    }
    
    STATIC void emit_native_store_subscr(emit_t *emit) {
        // depends on type of subject:
        //  - integer, function, pointer to structure: error
        //  - pointer to integers: store as per array
        //  - Python object: call runtime with converted object or type info
        vtype_kind_t vtype_index, vtype_base, vtype_value;
        emit_pre_pop_reg_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1, &vtype_value, REG_ARG_3); // index, base, value to store
        assert(vtype_index == VTYPE_PYOBJ);
        assert(vtype_base == VTYPE_PYOBJ);
        assert(vtype_value == VTYPE_PYOBJ);
        emit_call(emit, MP_F_OBJ_SUBSCR, mp_obj_subscr);
    }
    
    STATIC void emit_native_delete_fast(emit_t *emit, qstr qstr, int local_num) {
        // not implemented
        // could support for Python types, just set to None (so GC can reclaim it)
        assert(0);
    }
    
    STATIC void emit_native_delete_deref(emit_t *emit, qstr qstr, int local_num) {
        // not supported
        assert(0);
    }
    
    STATIC void emit_native_delete_name(emit_t *emit, qstr qstr) {
        // not implemented
        // use mp_delete_name
        assert(0);
    }
    
    STATIC void emit_native_delete_global(emit_t *emit, qstr qstr) {
        // not implemented
        // use mp_delete_global
        assert(0);
    }
    
    STATIC void emit_native_delete_attr(emit_t *emit, qstr qstr) {
        // not supported
        assert(0);
    }
    
    STATIC void emit_native_delete_subscr(emit_t *emit) {
        vtype_kind_t vtype_index, vtype_base;
        emit_pre_pop_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1); // index, base
        assert(vtype_index == VTYPE_PYOBJ);
        assert(vtype_base == VTYPE_PYOBJ);
        emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, mp_obj_subscr, (machine_uint_t)MP_OBJ_NULL, REG_ARG_3);
    }
    
    STATIC void emit_native_dup_top(emit_t *emit) {
        vtype_kind_t vtype;
        emit_pre_pop_reg(emit, &vtype, REG_TEMP0);
        emit_post_push_reg_reg(emit, vtype, REG_TEMP0, vtype, REG_TEMP0);
    }
    
    STATIC void emit_native_dup_top_two(emit_t *emit) {
        vtype_kind_t vtype0, vtype1;
        emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1);
        emit_post_push_reg_reg_reg_reg(emit, vtype1, REG_TEMP1, vtype0, REG_TEMP0, vtype1, REG_TEMP1, vtype0, REG_TEMP0);
    }
    
    STATIC void emit_native_pop_top(emit_t *emit) {
        vtype_kind_t vtype;
        emit_pre_pop_discard(emit, &vtype);
        emit_post(emit);
    }
    
    STATIC void emit_native_rot_two(emit_t *emit) {
        vtype_kind_t vtype0, vtype1;
        emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1);
        emit_post_push_reg_reg(emit, vtype0, REG_TEMP0, vtype1, REG_TEMP1);
    }
    
    STATIC void emit_native_rot_three(emit_t *emit) {
        vtype_kind_t vtype0, vtype1, vtype2;
        emit_pre_pop_reg_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1, &vtype2, REG_TEMP2);
        emit_post_push_reg_reg_reg(emit, vtype0, REG_TEMP0, vtype2, REG_TEMP2, vtype1, REG_TEMP1);
    }
    
    STATIC void emit_native_jump(emit_t *emit, uint label) {
        emit_native_pre(emit);
        // need to commit stack because we are jumping elsewhere
        need_stack_settled(emit);
    #if N_X64
        asm_x64_jmp_label(emit->as, label);
    #elif N_THUMB
        asm_thumb_b_label(emit->as, label);
    #endif
        emit_post(emit);
    }
    
    STATIC void emit_native_jump_helper(emit_t *emit, uint label, bool pop) {
        vtype_kind_t vtype = peek_vtype(emit);
        if (vtype == VTYPE_BOOL) {
            emit_pre_pop_reg(emit, &vtype, REG_RET);
            if (!pop) {
                adjust_stack(emit, 1);
            }
        } else if (vtype == VTYPE_PYOBJ) {
            emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
            emit_call(emit, MP_F_OBJ_IS_TRUE, mp_obj_is_true);
            if (!pop) {
                emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
            }
        } else {
            printf("ViperTypeError: expecting a bool or pyobj, got %d\n", vtype);
            assert(0);
        }
        // need to commit stack because we may jump elsewhere
        need_stack_settled(emit);
    }
    
    STATIC void emit_native_pop_jump_if_true(emit_t *emit, uint label) {
        emit_native_jump_helper(emit, label, true);
    #if N_X64
        asm_x64_test_r8_with_r8(emit->as, REG_RET, REG_RET);
        asm_x64_jcc_label(emit->as, JCC_JNZ, label);
    #elif N_THUMB
        asm_thumb_cmp_rlo_i8(emit->as, REG_RET, 0);
        asm_thumb_bcc_label(emit->as, THUMB_CC_NE, label);
    #endif
        emit_post(emit);
    }
    
    STATIC void emit_native_pop_jump_if_false(emit_t *emit, uint label) {
        emit_native_jump_helper(emit, label, true);
    #if N_X64
        asm_x64_test_r8_with_r8(emit->as, REG_RET, REG_RET);
        asm_x64_jcc_label(emit->as, JCC_JZ, label);
    #elif N_THUMB
        asm_thumb_cmp_rlo_i8(emit->as, REG_RET, 0);
        asm_thumb_bcc_label(emit->as, THUMB_CC_EQ, label);
    #endif
        emit_post(emit);
    }
    
    STATIC void emit_native_jump_if_true_or_pop(emit_t *emit, uint label) {
        emit_native_jump_helper(emit, label, false);
    #if N_X64
        asm_x64_test_r8_with_r8(emit->as, REG_RET, REG_RET);
        asm_x64_jcc_label(emit->as, JCC_JNZ, label);
    #elif N_THUMB
        asm_thumb_cmp_rlo_i8(emit->as, REG_RET, 0);
        asm_thumb_bcc_label(emit->as, THUMB_CC_NE, label);
    #endif
        adjust_stack(emit, -1);
        emit_post(emit);
    }
    
    STATIC void emit_native_jump_if_false_or_pop(emit_t *emit, uint label) {
        emit_native_jump_helper(emit, label, false);
    #if N_X64
        asm_x64_test_r8_with_r8(emit->as, REG_RET, REG_RET);
        asm_x64_jcc_label(emit->as, JCC_JZ, label);
    #elif N_THUMB
        asm_thumb_cmp_rlo_i8(emit->as, REG_RET, 0);
        asm_thumb_bcc_label(emit->as, THUMB_CC_EQ, label);
    #endif
        adjust_stack(emit, -1);
        emit_post(emit);
    }
    
    STATIC void emit_native_break_loop(emit_t *emit, uint label, int except_depth) {
        emit_native_jump(emit, label); // TODO properly
    }
    
    STATIC void emit_native_continue_loop(emit_t *emit, uint label, int except_depth) {
        emit_native_jump(emit, label); // TODO properly
    }
    
    STATIC void emit_native_setup_with(emit_t *emit, uint label) {
        // not supported, or could be with runtime call
        assert(0);
    }
    STATIC void emit_native_with_cleanup(emit_t *emit) {
        assert(0);
    }
    STATIC void emit_native_setup_except(emit_t *emit, uint label) {
        assert(0);
    }
    STATIC void emit_native_setup_finally(emit_t *emit, uint label) {
        assert(0);
    }
    STATIC void emit_native_end_finally(emit_t *emit) {
        assert(0);
    }
    
    STATIC void emit_native_get_iter(emit_t *emit) {
        // perhaps the difficult one, as we want to rewrite for loops using native code
        // in cases where we iterate over a Python object, can we use normal runtime calls?
    
        vtype_kind_t vtype;
        emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
        assert(vtype == VTYPE_PYOBJ);
        emit_call(emit, MP_F_GETITER, mp_getiter);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_for_iter(emit_t *emit, uint label) {
        emit_native_pre(emit);
        vtype_kind_t vtype;
        emit_access_stack(emit, 1, &vtype, REG_ARG_1);
        assert(vtype == VTYPE_PYOBJ);
        emit_call(emit, MP_F_ITERNEXT, mp_iternext);
        ASM_MOV_IMM_TO_REG((machine_uint_t)MP_OBJ_STOP_ITERATION, REG_TEMP1);
    #if N_X64
        asm_x64_cmp_r64_with_r64(emit->as, REG_RET, REG_TEMP1);
        asm_x64_jcc_label(emit->as, JCC_JE, label);
    #elif N_THUMB
        asm_thumb_cmp_rlo_rlo(emit->as, REG_RET, REG_TEMP1);
        asm_thumb_bcc_label(emit->as, THUMB_CC_EQ, label);
    #endif
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_for_iter_end(emit_t *emit) {
        // adjust stack counter (we get here from for_iter ending, which popped the value for us)
        emit_native_pre(emit);
        adjust_stack(emit, -1);
        emit_post(emit);
    }
    
    STATIC void emit_native_pop_block(emit_t *emit) {
        emit_native_pre(emit);
        emit_post(emit);
    }
    
    STATIC void emit_native_pop_except(emit_t *emit) {
        assert(0);
    }
    
    STATIC void emit_native_unary_op(emit_t *emit, mp_unary_op_t op) {
        vtype_kind_t vtype;
        emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
        assert(vtype == VTYPE_PYOBJ);
        emit_call_with_imm_arg(emit, MP_F_UNARY_OP, mp_unary_op, op, REG_ARG_1);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_binary_op(emit_t *emit, mp_binary_op_t op) {
        vtype_kind_t vtype_lhs, vtype_rhs;
        emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2);
        if (vtype_lhs == VTYPE_INT && vtype_rhs == VTYPE_INT) {
            if (op == MP_BINARY_OP_ADD || op == MP_BINARY_OP_INPLACE_ADD) {
    #if N_X64
                asm_x64_add_r64_to_r64(emit->as, REG_ARG_3, REG_ARG_2);
    #elif N_THUMB
                asm_thumb_add_rlo_rlo_rlo(emit->as, REG_ARG_2, REG_ARG_2, REG_ARG_3);
    #endif
                emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
            } else if (op == MP_BINARY_OP_LESS) {
    #if N_X64
                asm_x64_xor_r64_to_r64(emit->as, REG_RET, REG_RET);
                asm_x64_cmp_r64_with_r64(emit->as, REG_ARG_3, REG_ARG_2);
                asm_x64_setcc_r8(emit->as, JCC_JL, REG_RET);
    #elif N_THUMB
                asm_thumb_cmp_rlo_rlo(emit->as, REG_ARG_2, REG_ARG_3);
                asm_thumb_ite_ge(emit->as);
                asm_thumb_mov_rlo_i8(emit->as, REG_RET, 0); // if r0 >= r1
                asm_thumb_mov_rlo_i8(emit->as, REG_RET, 1); // if r0 < r1
    #endif
                emit_post_push_reg(emit, VTYPE_BOOL, REG_RET);
            } else {
                // TODO other ops not yet implemented
                assert(0);
            }
        } else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) {
            emit_call_with_imm_arg(emit, MP_F_BINARY_OP, mp_binary_op, op, REG_ARG_1);
            emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
        } else {
            printf("ViperTypeError: can't do binary op between types %d and %d\n", vtype_lhs, vtype_rhs);
            assert(0);
        }
    }
    
    STATIC void emit_native_build_tuple(emit_t *emit, int n_args) {
        // for viper: call runtime, with types of args
        //   if wrapped in byte_array, or something, allocates memory and fills it
        emit_native_pre(emit);
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items
        emit_call_with_imm_arg(emit, MP_F_BUILD_TUPLE, mp_obj_new_tuple, n_args, REG_ARG_1);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new tuple
    }
    
    STATIC void emit_native_build_list(emit_t *emit, int n_args) {
        emit_native_pre(emit);
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items
        emit_call_with_imm_arg(emit, MP_F_BUILD_LIST, mp_obj_new_list, n_args, REG_ARG_1);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new list
    }
    
    STATIC void emit_native_list_append(emit_t *emit, int list_index) {
        // only used in list comprehension
        vtype_kind_t vtype_list, vtype_item;
        emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2);
        emit_access_stack(emit, list_index, &vtype_list, REG_ARG_1);
        assert(vtype_list == VTYPE_PYOBJ);
        assert(vtype_item == VTYPE_PYOBJ);
        emit_call(emit, MP_F_LIST_APPEND, mp_obj_list_append);
        emit_post(emit);
    }
    
    STATIC void emit_native_build_map(emit_t *emit, int n_args) {
        emit_native_pre(emit);
        emit_call_with_imm_arg(emit, MP_F_BUILD_MAP, mp_obj_new_dict, n_args, REG_ARG_1);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new map
    }
    
    STATIC void emit_native_store_map(emit_t *emit) {
        vtype_kind_t vtype_key, vtype_value, vtype_map;
        emit_pre_pop_reg_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3, &vtype_map, REG_ARG_1); // key, value, map
        assert(vtype_key == VTYPE_PYOBJ);
        assert(vtype_value == VTYPE_PYOBJ);
        assert(vtype_map == VTYPE_PYOBJ);
        emit_call(emit, MP_F_STORE_MAP, mp_obj_dict_store);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // map
    }
    
    STATIC void emit_native_map_add(emit_t *emit, int map_index) {
        // only used in list comprehension
        vtype_kind_t vtype_map, vtype_key, vtype_value;
        emit_pre_pop_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3);
        emit_access_stack(emit, map_index, &vtype_map, REG_ARG_1);
        assert(vtype_map == VTYPE_PYOBJ);
        assert(vtype_key == VTYPE_PYOBJ);
        assert(vtype_value == VTYPE_PYOBJ);
        emit_call(emit, MP_F_STORE_MAP, mp_obj_dict_store);
        emit_post(emit);
    }
    
    STATIC void emit_native_build_set(emit_t *emit, int n_args) {
        emit_native_pre(emit);
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items
        emit_call_with_imm_arg(emit, MP_F_BUILD_SET, mp_obj_new_set, n_args, REG_ARG_1);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new set
    }
    
    STATIC void emit_native_set_add(emit_t *emit, int set_index) {
        // only used in set comprehension
        vtype_kind_t vtype_set, vtype_item;
        emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2);
        emit_access_stack(emit, set_index, &vtype_set, REG_ARG_1);
        assert(vtype_set == VTYPE_PYOBJ);
        assert(vtype_item == VTYPE_PYOBJ);
        emit_call(emit, MP_F_STORE_SET, mp_obj_set_store);
        emit_post(emit);
    }
    
    STATIC void emit_native_build_slice(emit_t *emit, int n_args) {
        DEBUG_printf("build_slice %d\n", n_args);
        assert(n_args == 2);
        vtype_kind_t vtype_start, vtype_stop;
        emit_pre_pop_reg_reg(emit, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop
        assert(vtype_start == VTYPE_PYOBJ);
        assert(vtype_stop == VTYPE_PYOBJ);
        emit_call_with_imm_arg(emit, MP_F_NEW_SLICE, mp_obj_new_slice, (machine_uint_t)MP_OBJ_NULL, REG_ARG_3); // arg3 = step
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_unpack_sequence(emit_t *emit, int n_args) {
        // TODO this is untested
        DEBUG_printf("unpack_sequence %d\n", n_args);
        vtype_kind_t vtype_base;
        emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq
        assert(vtype_base == VTYPE_PYOBJ);
        emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_args); // arg3 = dest ptr
        emit_call_with_imm_arg(emit, MP_F_UNPACK_SEQUENCE, mp_unpack_sequence, n_args, REG_ARG_2); // arg2 = n_args
    }
    
    STATIC void emit_native_unpack_ex(emit_t *emit, int n_left, int n_right) {
        // TODO this is untested
        DEBUG_printf("unpack_ex %d %d\n", n_left, n_right);
        vtype_kind_t vtype_base;
        emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq
        assert(vtype_base == VTYPE_PYOBJ);
        emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_left + n_right); // arg3 = dest ptr
        emit_call_with_imm_arg(emit, MP_F_UNPACK_EX, mp_unpack_ex, n_left + n_right, REG_ARG_2); // arg2 = n_left + n_right
    }
    
    STATIC void emit_native_make_function(emit_t *emit, scope_t *scope, uint n_pos_defaults, uint n_kw_defaults) {
        // call runtime, with type info for args, or don't support dict/default params, or only support Python objects for them
        emit_native_pre(emit);
        if (n_pos_defaults == 0 && n_kw_defaults == 0) {
            emit_call_with_3_imm_args_and_first_aligned(emit, MP_F_MAKE_FUNCTION_FROM_RAW_CODE, mp_make_function_from_raw_code, (machine_uint_t)scope->raw_code, REG_ARG_1, (machine_uint_t)MP_OBJ_NULL, REG_ARG_2, (machine_uint_t)MP_OBJ_NULL, REG_ARG_3);
        } else {
            vtype_kind_t vtype_def_tuple, vtype_def_dict;
            emit_pre_pop_reg_reg(emit, &vtype_def_dict, REG_ARG_3, &vtype_def_tuple, REG_ARG_2);
            assert(vtype_def_tuple == VTYPE_PYOBJ);
            assert(vtype_def_dict == VTYPE_PYOBJ);
            emit_call_with_imm_arg_aligned(emit, MP_F_MAKE_FUNCTION_FROM_RAW_CODE, mp_make_function_from_raw_code, (machine_uint_t)scope->raw_code, REG_ARG_1);
        }
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_make_closure(emit_t *emit, scope_t *scope, uint n_closed_over, uint n_pos_defaults, uint n_kw_defaults) {
        assert(0);
    }
    
    STATIC void emit_native_call_function(emit_t *emit, int n_positional, int n_keyword, uint star_flags) {
        // call special viper runtime routine with type info for args, and wanted type info for return
        assert(!star_flags);
    
        /* we no longer have these _n specific call_function's
         * they anyway push args into an array
         * and they would take too much room in the native dispatch table
        if (n_positional == 0) {
            vtype_kind_t vtype_fun;
            emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function
            assert(vtype_fun == VTYPE_PYOBJ);
            emit_call(emit, MP_F_CALL_FUNCTION_0, mp_call_function_0);
        } else if (n_positional == 1) {
            vtype_kind_t vtype_fun, vtype_arg1;
            emit_pre_pop_reg_reg(emit, &vtype_arg1, REG_ARG_2, &vtype_fun, REG_ARG_1); // the single argument, the function
            assert(vtype_fun == VTYPE_PYOBJ);
            assert(vtype_arg1 == VTYPE_PYOBJ);
            emit_call(emit, MP_F_CALL_FUNCTION_1, mp_call_function_1);
        } else if (n_positional == 2) {
            vtype_kind_t vtype_fun, vtype_arg1, vtype_arg2;
            emit_pre_pop_reg_reg_reg(emit, &vtype_arg2, REG_ARG_3, &vtype_arg1, REG_ARG_2, &vtype_fun, REG_ARG_1); // the second argument, the first argument, the function
            assert(vtype_fun == VTYPE_PYOBJ);
            assert(vtype_arg1 == VTYPE_PYOBJ);
            assert(vtype_arg2 == VTYPE_PYOBJ);
            emit_call(emit, MP_F_CALL_FUNCTION_2, mp_call_function_2);
        } else {
        */
    
        emit_native_pre(emit);
        if (n_positional != 0 || n_keyword != 0) {
            emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword); // pointer to args
        }
        vtype_kind_t vtype_fun;
        emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function
        assert(vtype_fun == VTYPE_PYOBJ);
        emit_call_with_imm_arg(emit, MP_F_CALL_FUNCTION_N_KW_FOR_NATIVE, mp_call_function_n_kw_for_native, n_positional | (n_keyword << 8), REG_ARG_2);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_call_method(emit_t *emit, int n_positional, int n_keyword, uint star_flags) {
        assert(!star_flags);
    
        /*
        if (n_positional == 0) {
            vtype_kind_t vtype_meth, vtype_self;
            emit_pre_pop_reg_reg(emit, &vtype_self, REG_ARG_2, &vtype_meth, REG_ARG_1); // the self object (or NULL), the method
            assert(vtype_meth == VTYPE_PYOBJ);
            assert(vtype_self == VTYPE_PYOBJ);
            emit_call(emit, MP_F_CALL_METHOD_1, mp_call_method_1);
        } else if (n_positional == 1) {
            vtype_kind_t vtype_meth, vtype_self, vtype_arg1;
            emit_pre_pop_reg_reg_reg(emit, &vtype_arg1, REG_ARG_3, &vtype_self, REG_ARG_2, &vtype_meth, REG_ARG_1); // the first argument, the self object (or NULL), the method
            assert(vtype_meth == VTYPE_PYOBJ);
            assert(vtype_self == VTYPE_PYOBJ);
            assert(vtype_arg1 == VTYPE_PYOBJ);
            emit_call(emit, MP_F_CALL_METHOD_2, mp_call_method_2);
        } else {
        */
    
        emit_native_pre(emit);
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_positional + 2 * n_keyword); // pointer to items, including meth and self
        emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, mp_call_method_n_kw, n_positional, REG_ARG_1, n_keyword, REG_ARG_2);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
    
    STATIC void emit_native_return_value(emit_t *emit) {
        DEBUG_printf("return_value\n");
        // easy.  since we don't know who we return to, just return the raw value.
        // runtime needs then to know our type signature, but I think that's possible.
        vtype_kind_t vtype;
        emit_pre_pop_reg(emit, &vtype, REG_RET);
        if (emit->do_viper_types) {
            assert(vtype == VTYPE_PTR_NONE);
        } else {
            assert(vtype == VTYPE_PYOBJ);
        }
        emit->last_emit_was_return_value = true;
    #if N_X64
        //asm_x64_call_ind(emit->as, 0, REG_RAX); to seg fault for debugging with gdb
        asm_x64_exit(emit->as);
    #elif N_THUMB
        //asm_thumb_call_ind(emit->as, 0, REG_R0); to seg fault for debugging with gdb
        asm_thumb_exit(emit->as);
    #endif
    }
    
    STATIC void emit_native_raise_varargs(emit_t *emit, int n_args) {
        // call runtime
        assert(0);
    }
    STATIC void emit_native_yield_value(emit_t *emit) {
        // not supported (for now)
        assert(0);
    }
    STATIC void emit_native_yield_from(emit_t *emit) {
        // not supported (for now)
        assert(0);
    }
    
    const emit_method_table_t EXPORT_FUN(method_table) = {
        emit_native_set_viper_types,
        emit_native_start_pass,
        emit_native_end_pass,
        emit_native_last_emit_was_return_value,
        emit_native_adjust_stack_size,
        emit_native_set_source_line,
    
        emit_native_load_id,
        emit_native_store_id,
        emit_native_delete_id,
    
        emit_native_label_assign,
        emit_native_import_name,
        emit_native_import_from,
        emit_native_import_star,
        emit_native_load_const_tok,
        emit_native_load_const_small_int,
        emit_native_load_const_int,
        emit_native_load_const_dec,
        emit_native_load_const_str,
        emit_native_load_null,
        emit_native_load_fast,
        emit_native_load_deref,
        emit_native_load_name,
        emit_native_load_global,
        emit_native_load_attr,
        emit_native_load_method,
        emit_native_load_build_class,
        emit_native_load_subscr,
        emit_native_store_fast,
        emit_native_store_deref,
        emit_native_store_name,
        emit_native_store_global,
        emit_native_store_attr,
        emit_native_store_subscr,
        emit_native_delete_fast,
        emit_native_delete_deref,
        emit_native_delete_name,
        emit_native_delete_global,
        emit_native_delete_attr,
        emit_native_delete_subscr,
        emit_native_dup_top,
        emit_native_dup_top_two,
        emit_native_pop_top,
        emit_native_rot_two,
        emit_native_rot_three,
        emit_native_jump,
        emit_native_pop_jump_if_true,
        emit_native_pop_jump_if_false,
        emit_native_jump_if_true_or_pop,
        emit_native_jump_if_false_or_pop,
        emit_native_break_loop,
        emit_native_continue_loop,
        emit_native_setup_with,
        emit_native_with_cleanup,
        emit_native_setup_except,
        emit_native_setup_finally,
        emit_native_end_finally,
        emit_native_get_iter,
        emit_native_for_iter,
        emit_native_for_iter_end,
        emit_native_pop_block,
        emit_native_pop_except,
        emit_native_unary_op,
        emit_native_binary_op,
        emit_native_build_tuple,
        emit_native_build_list,
        emit_native_list_append,
        emit_native_build_map,
        emit_native_store_map,
        emit_native_map_add,
        emit_native_build_set,
        emit_native_set_add,
        emit_native_build_slice,
        emit_native_unpack_sequence,
        emit_native_unpack_ex,
        emit_native_make_function,
        emit_native_make_closure,
        emit_native_call_function,
        emit_native_call_method,
        emit_native_return_value,
        emit_native_raise_varargs,
        emit_native_yield_value,
        emit_native_yield_from,
    };
    
    #endif // (MICROPY_EMIT_X64 && N_X64) || (MICROPY_EMIT_THUMB && N_THUMB)