Skip to content
Snippets Groups Projects
Select Git revision
  • e8f2db7da3f0e60901b09ee6eada99a9e875497f
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

main.c

Blame
  • main.c 18.71 KiB
    /*
     * This file is part of the Micro Python project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2013, 2014 Damien P. George
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <stdio.h>
    #include <string.h>
    
    #include "py/nlr.h"
    #include "py/lexer.h"
    #include "py/parse.h"
    #include "py/obj.h"
    #include "py/runtime.h"
    #include "py/stackctrl.h"
    #include "py/gc.h"
    #include "py/mphal.h"
    
    #include "lib/utils/pyexec.h"
    #include "lib/fatfs/ff.h"
    #include "extmod/fsusermount.h"
    
    #include "systick.h"
    #include "pendsv.h"
    #include "gccollect.h"
    #include "readline.h"
    #include "modmachine.h"
    #include "i2c.h"
    #include "spi.h"
    #include "uart.h"
    #include "timer.h"
    #include "led.h"
    #include "pin.h"
    #include "extint.h"
    #include "usrsw.h"
    #include "usb.h"
    #include "rtc.h"
    #include "storage.h"
    #include "sdcard.h"
    #include "rng.h"
    #include "accel.h"
    #include "servo.h"
    #include "dac.h"
    #include "can.h"
    #include "modnetwork.h"
    
    void SystemClock_Config(void);
    
    fs_user_mount_t fs_user_mount_flash;
    
    void flash_error(int n) {
        for (int i = 0; i < n; i++) {
            led_state(PYB_LED_R1, 1);
            led_state(PYB_LED_R2, 0);
            HAL_Delay(250);
            led_state(PYB_LED_R1, 0);
            led_state(PYB_LED_R2, 1);
            HAL_Delay(250);
        }
        led_state(PYB_LED_R2, 0);
    }
    
    void NORETURN __fatal_error(const char *msg) {
        for (volatile uint delay = 0; delay < 10000000; delay++) {
        }
        led_state(1, 1);
        led_state(2, 1);
        led_state(3, 1);
        led_state(4, 1);
        mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14);
        mp_hal_stdout_tx_strn(msg, strlen(msg));
        for (uint i = 0;;) {
            led_toggle(((i++) & 3) + 1);
            for (volatile uint delay = 0; delay < 10000000; delay++) {
            }
            if (i >= 16) {
                // to conserve power
                __WFI();
            }
        }
    }
    
    void nlr_jump_fail(void *val) {
        printf("FATAL: uncaught exception %p\n", val);
        mp_obj_print_exception(&mp_plat_print, (mp_obj_t)val);
        __fatal_error("");
    }
    
    #ifndef NDEBUG
    void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
        (void)func;
        printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
        __fatal_error("");
    }
    #endif
    
    STATIC mp_obj_t pyb_main(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
        static const mp_arg_t allowed_args[] = {
            { MP_QSTR_opt, MP_ARG_INT, {.u_int = 0} }
        };
    
        if (MP_OBJ_IS_STR(pos_args[0])) {
            MP_STATE_PORT(pyb_config_main) = pos_args[0];
    
            // parse args
            mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
            mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
            MP_STATE_VM(mp_optimise_value) = args[0].u_int;
        }
        return mp_const_none;
    }
    MP_DEFINE_CONST_FUN_OBJ_KW(pyb_main_obj, 1, pyb_main);
    
    static const char fresh_boot_py[] =
    "# boot.py -- run on boot-up\r\n"
    "# can run arbitrary Python, but best to keep it minimal\r\n"
    "\r\n"
    "import machine\r\n"
    "import pyb\r\n"
    "#pyb.main('main.py') # main script to run after this one\r\n"
    "#pyb.usb_mode('VCP+MSC') # act as a serial and a storage device\r\n"
    "#pyb.usb_mode('VCP+HID') # act as a serial device and a mouse\r\n"
    ;
    
    static const char fresh_main_py[] =
    "# main.py -- put your code here!\r\n"
    ;
    
    static const char fresh_pybcdc_inf[] =
    #include "genhdr/pybcdc_inf.h"
    ;
    
    static const char fresh_readme_txt[] =
    "This is a MicroPython board\r\n"
    "\r\n"
    "You can get started right away by writing your Python code in 'main.py'.\r\n"
    "\r\n"
    "For a serial prompt:\r\n"
    " - Windows: you need to go to 'Device manager', right click on the unknown device,\r\n"
    "   then update the driver software, using the 'pybcdc.inf' file found on this drive.\r\n"
    "   Then use a terminal program like Hyperterminal or putty.\r\n"
    " - Mac OS X: use the command: screen /dev/tty.usbmodem*\r\n"
    " - Linux: use the command: screen /dev/ttyACM0\r\n"
    "\r\n"
    "Please visit http://micropython.org/help/ for further help.\r\n"
    ;
    
    // avoid inlining to avoid stack usage within main()
    MP_NOINLINE STATIC void init_flash_fs(uint reset_mode) {
        // init the vfs object
        fs_user_mount_t *vfs = &fs_user_mount_flash;
        vfs->str = "/flash";
        vfs->len = 6;
        vfs->flags = 0;
        pyb_flash_init_vfs(vfs);
    
        // put the flash device in slot 0 (it will be unused at this point)
        MP_STATE_PORT(fs_user_mount)[0] = vfs;
    
        // try to mount the flash
        FRESULT res = f_mount(&vfs->fatfs, vfs->str, 1);
    
        if (reset_mode == 3 || res == FR_NO_FILESYSTEM) {
            // no filesystem, or asked to reset it, so create a fresh one
    
            // LED on to indicate creation of LFS
            led_state(PYB_LED_R2, 1);
            uint32_t start_tick = HAL_GetTick();
    
            res = f_mkfs("/flash", 0, 0);
            if (res == FR_OK) {
                // success creating fresh LFS
            } else {
                printf("PYB: can't create flash filesystem\n");
                MP_STATE_PORT(fs_user_mount)[0] = NULL;
                return;
            }
    
            // set label
            f_setlabel("/flash/pybflash");
    
            // create empty main.py
            FIL fp;
            f_open(&fp, "/flash/main.py", FA_WRITE | FA_CREATE_ALWAYS);
            UINT n;
            f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
            // TODO check we could write n bytes
            f_close(&fp);
    
            // create .inf driver file
            f_open(&fp, "/flash/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS);
            f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n);
            f_close(&fp);
    
            // create readme file
            f_open(&fp, "/flash/README.txt", FA_WRITE | FA_CREATE_ALWAYS);
            f_write(&fp, fresh_readme_txt, sizeof(fresh_readme_txt) - 1 /* don't count null terminator */, &n);
            f_close(&fp);
    
            // keep LED on for at least 200ms
            sys_tick_wait_at_least(start_tick, 200);
            led_state(PYB_LED_R2, 0);
        } else if (res == FR_OK) {
            // mount sucessful
        } else {
            printf("PYB: can't mount flash\n");
            MP_STATE_PORT(fs_user_mount)[0] = NULL;
            return;
        }
    
        // The current directory is used as the boot up directory.
        // It is set to the internal flash filesystem by default.
        f_chdrive("/flash");
    
        // Make sure we have a /flash/boot.py.  Create it if needed.
        FILINFO fno;
    #if _USE_LFN
        fno.lfname = NULL;
        fno.lfsize = 0;
    #endif
        res = f_stat("/flash/boot.py", &fno);
        if (res == FR_OK) {
            if (fno.fattrib & AM_DIR) {
                // exists as a directory
                // TODO handle this case
                // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
            } else {
                // exists as a file, good!
            }
        } else {
            // doesn't exist, create fresh file
    
            // LED on to indicate creation of boot.py
            led_state(PYB_LED_R2, 1);
            uint32_t start_tick = HAL_GetTick();
    
            FIL fp;
            f_open(&fp, "/flash/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
            UINT n;
            f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
            // TODO check we could write n bytes
            f_close(&fp);
    
            // keep LED on for at least 200ms
            sys_tick_wait_at_least(start_tick, 200);
            led_state(PYB_LED_R2, 0);
        }
    }
    
    STATIC uint update_reset_mode(uint reset_mode) {
    #if MICROPY_HW_HAS_SWITCH
        if (switch_get()) {
    
            // The original method used on the pyboard is appropriate if you have 2
            // or more LEDs.
    #if defined(MICROPY_HW_LED2)
            for (uint i = 0; i < 3000; i++) {
                if (!switch_get()) {
                    break;
                }
                HAL_Delay(20);
                if (i % 30 == 29) {
                    if (++reset_mode > 3) {
                        reset_mode = 1;
                    }
                    led_state(2, reset_mode & 1);
                    led_state(3, reset_mode & 2);
                    led_state(4, reset_mode & 4);
                }
            }
            // flash the selected reset mode
            for (uint i = 0; i < 6; i++) {
                led_state(2, 0);
                led_state(3, 0);
                led_state(4, 0);
                HAL_Delay(50);
                led_state(2, reset_mode & 1);
                led_state(3, reset_mode & 2);
                led_state(4, reset_mode & 4);
                HAL_Delay(50);
            }
            HAL_Delay(400);
    
    #elif defined(MICROPY_HW_LED1)
    
            // For boards with only a single LED, we'll flash that LED the
            // appropriate number of times, with a pause between each one
            for (uint i = 0; i < 10; i++) {
                led_state(1, 0);
                for (uint j = 0; j < reset_mode; j++) {
                    if (!switch_get()) {
                        break;
                    }
                    led_state(1, 1);
                    HAL_Delay(100);
                    led_state(1, 0);
                    HAL_Delay(200);
                }
                HAL_Delay(400);
                if (!switch_get()) {
                    break;
                }
                if (++reset_mode > 3) {
                    reset_mode = 1;
                }
            }
            // Flash the selected reset mode
            for (uint i = 0; i < 2; i++) {
                for (uint j = 0; j < reset_mode; j++) {
                    led_state(1, 1);
                    HAL_Delay(100);
                    led_state(1, 0);
                    HAL_Delay(200);
                }
                HAL_Delay(400);
            }
    #else
    #error Need a reset mode update method
    #endif
        }
    #endif
        return reset_mode;
    }
    
    int main(void) {
        // TODO disable JTAG
    
        // Stack limit should be less than real stack size, so we have a chance
        // to recover from limit hit.  (Limit is measured in bytes.)
        mp_stack_ctrl_init();
        mp_stack_set_limit((char*)&_ram_end - (char*)&_heap_end - 1024);
    
        /* STM32F4xx HAL library initialization:
             - Configure the Flash prefetch, instruction and Data caches
             - Configure the Systick to generate an interrupt each 1 msec
             - Set NVIC Group Priority to 4
             - Global MSP (MCU Support Package) initialization
           */
        HAL_Init();
    
        // set the system clock to be HSE
        SystemClock_Config();
    
        // enable GPIO clocks
        __GPIOA_CLK_ENABLE();
        __GPIOB_CLK_ENABLE();
        __GPIOC_CLK_ENABLE();
        __GPIOD_CLK_ENABLE();
    
        #if defined(MCU_SERIES_F4) ||  defined(MCU_SERIES_F7)
            #if defined(__HAL_RCC_DTCMRAMEN_CLK_ENABLE)
            // The STM32F746 doesn't really have CCM memory, but it does have DTCM,
            // which behaves more or less like normal SRAM.
            __HAL_RCC_DTCMRAMEN_CLK_ENABLE();
            #elif defined(CCMDATARAM_BASE)
            // enable the CCM RAM
            __HAL_RCC_CCMDATARAMEN_CLK_ENABLE();
            #endif
        #endif
    
        #if defined(MICROPY_BOARD_EARLY_INIT)
        MICROPY_BOARD_EARLY_INIT();
        #endif
    
        // basic sub-system init
        pendsv_init();
        led_init();
    #if MICROPY_HW_HAS_SWITCH
        switch_init0();
    #endif
    
    #if defined(USE_DEVICE_MODE)
        // default to internal flash being the usb medium
        pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_FLASH;
    #endif
    
        int first_soft_reset = true;
    
    soft_reset:
    
        // check if user switch held to select the reset mode
    #if defined(MICROPY_HW_LED2)
        led_state(1, 0);
        led_state(2, 1);
    #else
        led_state(1, 1);
        led_state(2, 0);
    #endif
        led_state(3, 0);
        led_state(4, 0);
        uint reset_mode = update_reset_mode(1);
    
        machine_init();
    
    #if MICROPY_HW_ENABLE_RTC
        if (first_soft_reset) {
            rtc_init_start(false);
        }
    #endif
    
        // more sub-system init
    #if MICROPY_HW_HAS_SDCARD
        if (first_soft_reset) {
            sdcard_init();
        }
    #endif
        if (first_soft_reset) {
            storage_init();
        }
    
        // GC init
        gc_init(&_heap_start, &_heap_end);
    
        // Micro Python init
        mp_init();
        mp_obj_list_init(mp_sys_path, 0);
        mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
        mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash));
        mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib));
        mp_obj_list_init(mp_sys_argv, 0);
    
        // Initialise low-level sub-systems.  Here we need to very basic things like
        // zeroing out memory and resetting any of the sub-systems.  Following this
        // we can run Python scripts (eg boot.py), but anything that is configurable
        // by boot.py must be set after boot.py is run.
    
        readline_init0();
        pin_init0();
        extint_init0();
        timer_init0();
        uart_init0();
    
        // Define MICROPY_HW_UART_REPL to be PYB_UART_6 and define
        // MICROPY_HW_UART_REPL_BAUD in your mpconfigboard.h file if you want a
        // REPL on a hardware UART as well as on USB VCP
    #if defined(MICROPY_HW_UART_REPL)
        {
            mp_obj_t args[2] = {
                MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL),
                MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL_BAUD),
            };
            MP_STATE_PORT(pyb_stdio_uart) = pyb_uart_type.make_new((mp_obj_t)&pyb_uart_type, MP_ARRAY_SIZE(args), 0, args);
        }
    #else
        MP_STATE_PORT(pyb_stdio_uart) = NULL;
    #endif
    
    #if MICROPY_HW_ENABLE_CAN
        can_init0();
    #endif
    
    #if MICROPY_HW_ENABLE_RNG
        rng_init0();
    #endif
    
        i2c_init0();
        spi_init0();
        pyb_usb_init0();
    
        // Initialise the local flash filesystem.
        // Create it if needed, mount in on /flash, and set it as current dir.
        init_flash_fs(reset_mode);
    
    #if MICROPY_HW_HAS_SDCARD
        // if an SD card is present then mount it on /sd/
        if (sdcard_is_present()) {
            // create vfs object
            fs_user_mount_t *vfs = m_new_obj_maybe(fs_user_mount_t);
            if (vfs == NULL) {
                goto no_mem_for_sd;
            }
            vfs->str = "/sd";
            vfs->len = 3;
            vfs->flags = FSUSER_FREE_OBJ;
            sdcard_init_vfs(vfs);
    
            // put the sd device in slot 1 (it will be unused at this point)
            MP_STATE_PORT(fs_user_mount)[1] = vfs;
    
            FRESULT res = f_mount(&vfs->fatfs, vfs->str, 1);
            if (res != FR_OK) {
                printf("PYB: can't mount SD card\n");
                MP_STATE_PORT(fs_user_mount)[1] = NULL;
                m_del_obj(fs_user_mount_t, vfs);
            } else {
                // TODO these should go before the /flash entries in the path
                mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd));
                mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd_slash_lib));
    
                if (first_soft_reset) {
                    // use SD card as medium for the USB MSD
    #if defined(USE_DEVICE_MODE)
                    pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_SDCARD;
    #endif
                }
    
                #if defined(USE_DEVICE_MODE)
                // only use SD card as current directory if that's what the USB medium is
                if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_SDCARD)
                #endif
                {
                    // use SD card as current directory
                    f_chdrive("/sd");
                }
            }
            no_mem_for_sd:;
        }
    #endif
    
        // reset config variables; they should be set by boot.py
        MP_STATE_PORT(pyb_config_main) = MP_OBJ_NULL;
    
        // run boot.py, if it exists
        // TODO perhaps have pyb.reboot([bootpy]) function to soft-reboot and execute custom boot.py
        if (reset_mode == 1 || reset_mode == 3) {
            const char *boot_py = "boot.py";
            FRESULT res = f_stat(boot_py, NULL);
            if (res == FR_OK) {
                int ret = pyexec_file(boot_py);
                if (ret & PYEXEC_FORCED_EXIT) {
                    goto soft_reset_exit;
                }
                if (!ret) {
                    flash_error(4);
                }
            }
        }
    
        // turn boot-up LEDs off
    #if !defined(MICROPY_HW_LED2)
        // If there is only one LED on the board then it's used to signal boot-up
        // and so we turn it off here.  Otherwise LED(1) is used to indicate dirty
        // flash cache and so we shouldn't change its state.
        led_state(1, 0);
    #endif
        led_state(2, 0);
        led_state(3, 0);
        led_state(4, 0);
    
        // Now we initialise sub-systems that need configuration from boot.py,
        // or whose initialisation can be safely deferred until after running
        // boot.py.
    
    #if defined(USE_DEVICE_MODE)
        // init USB device to default setting if it was not already configured
        if (!(pyb_usb_flags & PYB_USB_FLAG_USB_MODE_CALLED)) {
            pyb_usb_dev_init(USBD_VID, USBD_PID_CDC_MSC, USBD_MODE_CDC_MSC, NULL);
        }
    #endif
    
    #if MICROPY_HW_HAS_MMA7660
        // MMA accel: init and reset
        accel_init();
    #endif
    
    #if MICROPY_HW_ENABLE_SERVO
        // servo
        servo_init();
    #endif
    
    #if MICROPY_HW_ENABLE_DAC
        // DAC
        dac_init();
    #endif
    
    #if MICROPY_PY_NETWORK
        mod_network_init();
    #endif
    
        // At this point everything is fully configured and initialised.
    
        // Run the main script from the current directory.
        if ((reset_mode == 1 || reset_mode == 3) && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
            const char *main_py;
            if (MP_STATE_PORT(pyb_config_main) == MP_OBJ_NULL) {
                main_py = "main.py";
            } else {
                main_py = mp_obj_str_get_str(MP_STATE_PORT(pyb_config_main));
            }
            FRESULT res = f_stat(main_py, NULL);
            if (res == FR_OK) {
                int ret = pyexec_file(main_py);
                if (ret & PYEXEC_FORCED_EXIT) {
                    goto soft_reset_exit;
                }
                if (!ret) {
                    flash_error(3);
                }
            }
        }
    
        // Main script is finished, so now go into REPL mode.
        // The REPL mode can change, or it can request a soft reset.
        for (;;) {
            if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
                if (pyexec_raw_repl() != 0) {
                    break;
                }
            } else {
                if (pyexec_friendly_repl() != 0) {
                    break;
                }
            }
        }
    
    soft_reset_exit:
    
        // soft reset
    
        printf("PYB: sync filesystems\n");
        storage_flush();
    
        printf("PYB: soft reboot\n");
        timer_deinit();
        uart_deinit();
    #if MICROPY_HW_ENABLE_CAN
        can_deinit();
    #endif
    
        first_soft_reset = false;
        goto soft_reset;
    }