Skip to content
Snippets Groups Projects
Select Git revision
  • ede8a0235b47333aaaa8d03a3b9e20b014be3808
  • wip-bootstrap default
  • dualcore
  • ch3/leds
  • ch3/time
  • master
6 results

objint.c

Blame
  • objint.c 15.60 KiB
    /*
     * This file is part of the MicroPython project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2013, 2014 Damien P. George
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <stdlib.h>
    #include <assert.h>
    #include <string.h>
    
    #include "py/nlr.h"
    #include "py/parsenum.h"
    #include "py/smallint.h"
    #include "py/objint.h"
    #include "py/objstr.h"
    #include "py/runtime0.h"
    #include "py/runtime.h"
    #include "py/binary.h"
    
    #if MICROPY_PY_BUILTINS_FLOAT
    #include <math.h>
    #endif
    
    // This dispatcher function is expected to be independent of the implementation of long int
    STATIC mp_obj_t mp_obj_int_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
        (void)type_in;
        mp_arg_check_num(n_args, n_kw, 0, 2, false);
    
        switch (n_args) {
            case 0:
                return MP_OBJ_NEW_SMALL_INT(0);
    
            case 1:
                if (MP_OBJ_IS_INT(args[0])) {
                    // already an int (small or long), just return it
                    return args[0];
                } else if (MP_OBJ_IS_STR_OR_BYTES(args[0])) {
                    // a string, parse it
                    size_t l;
                    const char *s = mp_obj_str_get_data(args[0], &l);
                    return mp_parse_num_integer(s, l, 0, NULL);
    #if MICROPY_PY_BUILTINS_FLOAT
                } else if (mp_obj_is_float(args[0])) {
                    return mp_obj_new_int_from_float(mp_obj_float_get(args[0]));
    #endif
                } else {
                    // try to convert to small int (eg from bool)
                    return MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(args[0]));
                }
    
            case 2:
            default: {
                // should be a string, parse it
                // TODO proper error checking of argument types
                size_t l;
                const char *s = mp_obj_str_get_data(args[0], &l);
                return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]), NULL);
            }
        }
    }
    
    #if MICROPY_PY_BUILTINS_FLOAT
    
    typedef enum {
        MP_FP_CLASS_FIT_SMALLINT,
        MP_FP_CLASS_FIT_LONGINT,
        MP_FP_CLASS_OVERFLOW
    } mp_fp_as_int_class_t;
    
    STATIC mp_fp_as_int_class_t mp_classify_fp_as_int(mp_float_t val) {
        union {
            mp_float_t f;
    #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
            uint32_t i;
    #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
            uint32_t i[2];
    #endif
        } u = {val};
    
        uint32_t e;
    #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
        e = u.i;
    #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
        e = u.i[MP_ENDIANNESS_LITTLE];
    #endif
    #define MP_FLOAT_SIGN_SHIFT_I32 ((MP_FLOAT_FRAC_BITS + MP_FLOAT_EXP_BITS) % 32)
    #define MP_FLOAT_EXP_SHIFT_I32 (MP_FLOAT_FRAC_BITS % 32)
    
        if (e & (1U << MP_FLOAT_SIGN_SHIFT_I32)) {
    #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
            e |= u.i[MP_ENDIANNESS_BIG] != 0;
    #endif
            if ((e & ~(1 << MP_FLOAT_SIGN_SHIFT_I32)) == 0) {
                // handle case of -0 (when sign is set but rest of bits are zero)
                e = 0;
            } else {
                e += ((1 << MP_FLOAT_EXP_BITS) - 1) << MP_FLOAT_EXP_SHIFT_I32;
            }
        } else {
            e &= ~((1 << MP_FLOAT_EXP_SHIFT_I32) - 1);
        }
        // 8 * sizeof(uintptr_t) counts the number of bits for a small int
        // TODO provide a way to configure this properly
        if (e <= ((8 * sizeof(uintptr_t) + MP_FLOAT_EXP_BIAS - 3) << MP_FLOAT_EXP_SHIFT_I32)) {
            return MP_FP_CLASS_FIT_SMALLINT;
        }
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
        if (e <= (((sizeof(long long) * BITS_PER_BYTE) + MP_FLOAT_EXP_BIAS - 2) << MP_FLOAT_EXP_SHIFT_I32)) {
            return MP_FP_CLASS_FIT_LONGINT;
        }
    #endif
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
        return MP_FP_CLASS_FIT_LONGINT;
    #else
        return MP_FP_CLASS_OVERFLOW;
    #endif
    }
    #undef MP_FLOAT_SIGN_SHIFT_I32
    #undef MP_FLOAT_EXP_SHIFT_I32
    
    mp_obj_t mp_obj_new_int_from_float(mp_float_t val) {
        int cl = fpclassify(val);
        if (cl == FP_INFINITE) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "can't convert inf to int"));
        } else if (cl == FP_NAN) {
            mp_raise_ValueError("can't convert NaN to int");
        } else {
            mp_fp_as_int_class_t icl = mp_classify_fp_as_int(val);
            if (icl == MP_FP_CLASS_FIT_SMALLINT) {
                return MP_OBJ_NEW_SMALL_INT((mp_int_t)val);
            #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
            } else {
                mp_obj_int_t *o = mp_obj_int_new_mpz();
                mpz_set_from_float(&o->mpz, val);
                return MP_OBJ_FROM_PTR(o);
            }
            #else
            #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
            } else if (icl == MP_FP_CLASS_FIT_LONGINT) {
                return mp_obj_new_int_from_ll((long long)val);
            #endif
            } else {
                mp_raise_ValueError("float too big");
            }
            #endif
        }
    }
    
    #endif
    
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
    typedef mp_longint_impl_t fmt_int_t;
    typedef unsigned long long fmt_uint_t;
    #else
    typedef mp_int_t fmt_int_t;
    typedef mp_uint_t fmt_uint_t;
    #endif
    
    void mp_obj_int_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
        (void)kind;
        // The size of this buffer is rather arbitrary. If it's not large
        // enough, a dynamic one will be allocated.
        char stack_buf[sizeof(fmt_int_t) * 4];
        char *buf = stack_buf;
        size_t buf_size = sizeof(stack_buf);
        size_t fmt_size;
    
        char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0');
        mp_print_str(print, str);
    
        if (buf != stack_buf) {
            m_del(char, buf, buf_size);
        }
    }
    
    STATIC const uint8_t log_base2_floor[] = {
        0, 1, 1, 2,
        2, 2, 2, 3,
        3, 3, 3, 3,
        3, 3, 3, 4,
        /* if needed, these are the values for higher bases
        4, 4, 4, 4,
        4, 4, 4, 4,
        4, 4, 4, 4,
        4, 4, 4, 5
        */
    };
    
    size_t mp_int_format_size(size_t num_bits, int base, const char *prefix, char comma) {
        assert(2 <= base && base <= 16);
        size_t num_digits = num_bits / log_base2_floor[base - 1] + 1;
        size_t num_commas = comma ? num_digits / 3 : 0;
        size_t prefix_len = prefix ? strlen(prefix) : 0;
        return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte
    }
    
    // This routine expects you to pass in a buffer and size (in *buf and *buf_size).
    // If, for some reason, this buffer is too small, then it will allocate a
    // buffer and return the allocated buffer and size in *buf and *buf_size. It
    // is the callers responsibility to free this allocated buffer.
    //
    // The resulting formatted string will be returned from this function and the
    // formatted size will be in *fmt_size.
    char *mp_obj_int_formatted(char **buf, size_t *buf_size, size_t *fmt_size, mp_const_obj_t self_in,
                               int base, const char *prefix, char base_char, char comma) {
        fmt_int_t num;
        if (MP_OBJ_IS_SMALL_INT(self_in)) {
            // A small int; get the integer value to format.
            num = MP_OBJ_SMALL_INT_VALUE(self_in);
    #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
        } else if (MP_OBJ_IS_TYPE(self_in, &mp_type_int)) {
            // Not a small int.
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
            const mp_obj_int_t *self = self_in;
            // Get the value to format; mp_obj_get_int truncates to mp_int_t.
            num = self->val;
    #else
            // Delegate to the implementation for the long int.
            return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma);
    #endif
    #endif
        } else {
            // Not an int.
            **buf = '\0';
            *fmt_size = 0;
            return *buf;
        }
    
        char sign = '\0';
        if (num < 0) {
            num = -num;
            sign = '-';
        }
    
        size_t needed_size = mp_int_format_size(sizeof(fmt_int_t) * 8, base, prefix, comma);
        if (needed_size > *buf_size) {
            *buf = m_new(char, needed_size);
            *buf_size = needed_size;
        }
        char *str = *buf;
    
        char *b = str + needed_size;
        *(--b) = '\0';
        char *last_comma = b;
    
        if (num == 0) {
            *(--b) = '0';
        } else {
            do {
                // The cast to fmt_uint_t is because num is positive and we want unsigned arithmetic
                int c = (fmt_uint_t)num % base;
                num = (fmt_uint_t)num / base;
                if (c >= 10) {
                    c += base_char - 10;
                } else {
                    c += '0';
                }
                *(--b) = c;
                if (comma && num != 0 && b > str && (last_comma - b) == 3) {
                    *(--b) = comma;
                    last_comma = b;
                }
            }
            while (b > str && num != 0);
        }
        if (prefix) {
            size_t prefix_len = strlen(prefix);
            char *p = b - prefix_len;
            if (p > str) {
                b = p;
                while (*prefix) {
                    *p++ = *prefix++;
                }
            }
        }
        if (sign && b > str) {
            *(--b) = sign;
        }
        *fmt_size = *buf + needed_size - b - 1;
    
        return b;
    }
    
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
    
    int mp_obj_int_sign(mp_obj_t self_in) {
        mp_int_t val = mp_obj_get_int(self_in);
        if (val < 0) {
            return -1;
        } else if (val > 0) {
            return 1;
        } else {
            return 0;
        }
    }
    
    // This is called for operations on SMALL_INT that are not handled by mp_unary_op
    mp_obj_t mp_obj_int_unary_op(mp_unary_op_t op, mp_obj_t o_in) {
        return MP_OBJ_NULL; // op not supported
    }
    
    // This is called for operations on SMALL_INT that are not handled by mp_binary_op
    mp_obj_t mp_obj_int_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
        return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in);
    }
    
    // This is called only with strings whose value doesn't fit in SMALL_INT
    mp_obj_t mp_obj_new_int_from_str_len(const char **str, size_t len, bool neg, unsigned int base) {
        mp_raise_msg(&mp_type_OverflowError, "long int not supported in this build");
        return mp_const_none;
    }
    
    // This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
    mp_obj_t mp_obj_new_int_from_ll(long long val) {
        mp_raise_msg(&mp_type_OverflowError, "small int overflow");
        return mp_const_none;
    }
    
    // This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
    mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) {
        mp_raise_msg(&mp_type_OverflowError, "small int overflow");
        return mp_const_none;
    }
    
    mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) {
        // SMALL_INT accepts only signed numbers, so make sure the input
        // value fits completely in the small-int positive range.
        if ((value & ~MP_SMALL_INT_POSITIVE_MASK) == 0) {
            return MP_OBJ_NEW_SMALL_INT(value);
        }
        mp_raise_msg(&mp_type_OverflowError, "small int overflow");
        return mp_const_none;
    }
    
    mp_obj_t mp_obj_new_int(mp_int_t value) {
        if (MP_SMALL_INT_FITS(value)) {
            return MP_OBJ_NEW_SMALL_INT(value);
        }
        mp_raise_msg(&mp_type_OverflowError, "small int overflow");
        return mp_const_none;
    }
    
    mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) {
        return MP_OBJ_SMALL_INT_VALUE(self_in);
    }
    
    mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) {
        return MP_OBJ_SMALL_INT_VALUE(self_in);
    }
    
    #endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
    
    // This dispatcher function is expected to be independent of the implementation of long int
    // It handles the extra cases for integer-like arithmetic
    mp_obj_t mp_obj_int_binary_op_extra_cases(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
        if (rhs_in == mp_const_false) {
            // false acts as 0
            return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0));
        } else if (rhs_in == mp_const_true) {
            // true acts as 0
            return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1));
        } else if (op == MP_BINARY_OP_MULTIPLY) {
            if (MP_OBJ_IS_STR(rhs_in) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_bytes) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_list)) {
                // multiply is commutative for these types, so delegate to them
                return mp_binary_op(op, rhs_in, lhs_in);
            }
        }
        return MP_OBJ_NULL; // op not supported
    }
    
    // this is a classmethod
    STATIC mp_obj_t int_from_bytes(size_t n_args, const mp_obj_t *args) {
        // TODO: Support signed param (assumes signed=False at the moment)
        (void)n_args;
    
        // get the buffer info
        mp_buffer_info_t bufinfo;
        mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);
    
        const byte* buf = (const byte*)bufinfo.buf;
        int delta = 1;
        if (args[2] == MP_OBJ_NEW_QSTR(MP_QSTR_little)) {
            buf += bufinfo.len - 1;
            delta = -1;
        }
    
        mp_uint_t value = 0;
        size_t len = bufinfo.len;
        for (; len--; buf += delta) {
            #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
            if (value > (MP_SMALL_INT_MAX >> 8)) {
                // Result will overflow a small-int so construct a big-int
                return mp_obj_int_from_bytes_impl(args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little), bufinfo.len, bufinfo.buf);
            }
            #endif
            value = (value << 8) | *buf;
        }
        return mp_obj_new_int_from_uint(value);
    }
    
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_fun_obj, 3, 4, int_from_bytes);
    STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(int_from_bytes_obj, MP_ROM_PTR(&int_from_bytes_fun_obj));
    
    STATIC mp_obj_t int_to_bytes(size_t n_args, const mp_obj_t *args) {
        // TODO: Support signed param (assumes signed=False)
        (void)n_args;
    
        mp_int_t len = mp_obj_get_int(args[1]);
        if (len < 0) {
            mp_raise_ValueError(NULL);
        }
        bool big_endian = args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little);
    
        vstr_t vstr;
        vstr_init_len(&vstr, len);
        byte *data = (byte*)vstr.buf;
        memset(data, 0, len);
    
        #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
        if (!MP_OBJ_IS_SMALL_INT(args[0])) {
            mp_obj_int_to_bytes_impl(args[0], big_endian, len, data);
        } else
        #endif
        {
            mp_int_t val = MP_OBJ_SMALL_INT_VALUE(args[0]);
            size_t l = MIN((size_t)len, sizeof(val));
            mp_binary_set_int(l, big_endian, data + (big_endian ? (len - l) : 0), val);
        }
    
        return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
    }
    STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_to_bytes_obj, 3, 4, int_to_bytes);
    
    STATIC const mp_rom_map_elem_t int_locals_dict_table[] = {
        { MP_ROM_QSTR(MP_QSTR_from_bytes), MP_ROM_PTR(&int_from_bytes_obj) },
        { MP_ROM_QSTR(MP_QSTR_to_bytes), MP_ROM_PTR(&int_to_bytes_obj) },
    };
    
    STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table);
    
    const mp_obj_type_t mp_type_int = {
        { &mp_type_type },
        .name = MP_QSTR_int,
        .print = mp_obj_int_print,
        .make_new = mp_obj_int_make_new,
        .unary_op = mp_obj_int_unary_op,
        .binary_op = mp_obj_int_binary_op,
        .locals_dict = (mp_obj_dict_t*)&int_locals_dict,
    };