Skip to content
Snippets Groups Projects
Select Git revision
  • 63086117f0275c69c41ea78400b58ce6fde811f5
  • master default protected
  • esp32-nimble-wiki
  • rahix/hw-lock-new-mutex
  • dx/somewhat-more-dynamic-config
  • schneider/sdk-0.2.1-7
  • schneider/bsec
  • dx/meh-bdf-to-stm
  • dx/flatten-config-module
  • genofire/ble-follow-py
  • schneider/ble-stability
  • schneider/ble-stability-new-phy
  • add_menu_vibration
  • plaetzchen/ios-workaround
  • blinkisync-as-preload
  • schneider/max30001-pycardium
  • schneider/max30001-epicaridum
  • schneider/max30001
  • schneider/stream-locks
  • schneider/fundamental-test
  • schneider/ble-buffers
  • v1.12
  • v1.11
  • v1.10
  • v1.9
  • v1.8
  • v1.7
  • v1.6
  • v1.5
  • v1.4
  • v1.3
  • v1.2
  • v1.1
  • v1.0
  • release-1
  • bootloader-v1
  • v0.0
37 results

pride.py

Blame
  • Forked from card10 / firmware
    Source project has a limited visibility.
    obj.h 24.39 KiB
    // All Micro Python objects are at least this type
    // It must be of pointer size
    
    typedef machine_ptr_t mp_obj_t;
    typedef machine_const_ptr_t mp_const_obj_t;
    
    // Integers that fit in a pointer have this type
    // (do we need to expose this in the public API?)
    
    typedef machine_int_t mp_small_int_t;
    
    // Anything that wants to be a Micro Python object must have
    // mp_obj_base_t as its first member (except NULL and small ints)
    
    struct _mp_obj_type_t;
    struct _mp_obj_base_t {
        const struct _mp_obj_type_t *type;
    };
    typedef struct _mp_obj_base_t mp_obj_base_t;
    
    // The NULL object is used to indicate the absence of an object
    // It *cannot* be used when an mp_obj_t is expected, except where explicitly allowed
    
    #define MP_OBJ_NULL ((mp_obj_t)0)
    
    // The SENTINEL object is used for various internal purposes where one needs
    // an object which is unique from all other objects, including MP_OBJ_NULL.
    
    #define MP_OBJ_SENTINEL ((mp_obj_t)8)
    
    // These macros check for small int, qstr or object, and access small int and qstr values
    //  - xxxx...xxx1: a small int, bits 1 and above are the value
    //  - xxxx...xx10: a qstr, bits 2 and above are the value
    //  - xxxx...xx00: a pointer to an mp_obj_base_t
    
    // In SMALL_INT, next-to-highest bits is used as sign, so both must match for value in range
    #define MP_SMALL_INT_MIN ((mp_small_int_t)(((machine_int_t)WORD_MSBIT_HIGH) >> 1))
    #define MP_SMALL_INT_MAX ((mp_small_int_t)(~(MP_SMALL_INT_MIN)))
    #define MP_OBJ_FITS_SMALL_INT(n) ((((n) ^ ((n) << 1)) & WORD_MSBIT_HIGH) == 0)
    // these macros have now become inline functions; see below
    //#define MP_OBJ_IS_SMALL_INT(o) ((((mp_small_int_t)(o)) & 1) != 0)
    //#define MP_OBJ_IS_QSTR(o) ((((mp_small_int_t)(o)) & 3) == 2)
    //#define MP_OBJ_IS_OBJ(o) ((((mp_small_int_t)(o)) & 3) == 0)
    #define MP_OBJ_IS_TYPE(o, t) (MP_OBJ_IS_OBJ(o) && (((mp_obj_base_t*)(o))->type == (t))) // this does not work for checking a string, use below macro for that
    #define MP_OBJ_IS_INT(o) (MP_OBJ_IS_SMALL_INT(o) || MP_OBJ_IS_TYPE(o, &mp_type_int))
    #define MP_OBJ_IS_STR(o) (MP_OBJ_IS_QSTR(o) || MP_OBJ_IS_TYPE(o, &mp_type_str))
    
    #define MP_OBJ_SMALL_INT_VALUE(o) (((mp_small_int_t)(o)) >> 1)
    #define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)(((small_int) << 1) | 1))
    
    #define MP_OBJ_QSTR_VALUE(o) (((mp_small_int_t)(o)) >> 2)
    #define MP_OBJ_NEW_QSTR(qstr) ((mp_obj_t)((((machine_uint_t)qstr) << 2) | 2))
    
    // These macros are used to declare and define constant function objects
    // You can put "static" in front of the definitions to make them local
    
    #define MP_DECLARE_CONST_FUN_OBJ(obj_name) extern const mp_obj_fun_native_t obj_name
    
    #define MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, is_kw, n_args_min, n_args_max, fun_name) const mp_obj_fun_native_t obj_name = {{&mp_type_fun_native}, is_kw, n_args_min, n_args_max, (void *)fun_name}
    #define MP_DEFINE_CONST_FUN_OBJ_0(obj_name, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, 0, 0, (mp_fun_0_t)fun_name)
    #define MP_DEFINE_CONST_FUN_OBJ_1(obj_name, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, 1, 1, (mp_fun_1_t)fun_name)
    #define MP_DEFINE_CONST_FUN_OBJ_2(obj_name, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, 2, 2, (mp_fun_2_t)fun_name)
    #define MP_DEFINE_CONST_FUN_OBJ_3(obj_name, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, 3, 3, (mp_fun_3_t)fun_name)
    #define MP_DEFINE_CONST_FUN_OBJ_VAR(obj_name, n_args_min, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, n_args_min, MP_OBJ_FUN_ARGS_MAX, (mp_fun_var_t)fun_name)
    #define MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(obj_name, n_args_min, n_args_max, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, n_args_min, n_args_max, (mp_fun_var_t)fun_name)
    #define MP_DEFINE_CONST_FUN_OBJ_KW(obj_name, n_args_min, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, true, n_args_min, MP_OBJ_FUN_ARGS_MAX, (mp_fun_kw_t)fun_name)
    
    // This macro is used to define constant dict objects
    // You can put "static" in front of the definition to make it local
    
    #define MP_DEFINE_CONST_DICT(dict_name, table_name) \
        const mp_obj_dict_t dict_name = { \
            .base = {&mp_type_dict}, \
            .map = { \
                .all_keys_are_qstrs = 1, \
                .table_is_fixed_array = 1, \
                .used = sizeof(table_name) / sizeof(mp_map_elem_t), \
                .alloc = sizeof(table_name) / sizeof(mp_map_elem_t), \
                .table = (mp_map_elem_t*)table_name, \
            }, \
        }
    
    // These macros are used to declare and define constant staticmethond and classmethod objects
    // You can put "static" in front of the definitions to make them local
    
    #define MP_DECLARE_CONST_STATICMETHOD_OBJ(obj_name) extern const mp_obj_static_class_method_t obj_name
    #define MP_DECLARE_CONST_CLASSMETHOD_OBJ(obj_name) extern const mp_obj_static_class_method_t obj_name
    
    #define MP_DEFINE_CONST_STATICMETHOD_OBJ(obj_name, fun_name) const mp_obj_static_class_method_t obj_name = {{&mp_type_staticmethod}, fun_name}
    #define MP_DEFINE_CONST_CLASSMETHOD_OBJ(obj_name, fun_name) const mp_obj_static_class_method_t obj_name = {{&mp_type_classmethod}, fun_name}
    
    // Underlying map/hash table implementation (not dict object or map function)
    
    typedef struct _mp_map_elem_t {
        mp_obj_t key;
        mp_obj_t value;
    } mp_map_elem_t;
    
    // TODO maybe have a truncated mp_map_t for fixed tables, since alloc=used
    // put alloc last in the structure, so the truncated version does not need it
    // this would save 1 ROM word for all ROM objects that have a locals_dict
    // would also need a trucated dict structure
    
    typedef struct _mp_map_t {
        machine_uint_t all_keys_are_qstrs : 1;
        machine_uint_t table_is_fixed_array : 1;
        machine_uint_t used : (8 * sizeof(machine_uint_t) - 2);
        machine_uint_t alloc;
        mp_map_elem_t *table;
    } mp_map_t;
    
    // These can be or'd together
    typedef enum _mp_map_lookup_kind_t {
        MP_MAP_LOOKUP,                    // 0
        MP_MAP_LOOKUP_ADD_IF_NOT_FOUND,   // 1
        MP_MAP_LOOKUP_REMOVE_IF_FOUND,    // 2
    } mp_map_lookup_kind_t;
    
    static inline bool MP_MAP_SLOT_IS_FILLED(mp_map_t *map, machine_uint_t pos) { return ((map)->table[pos].key != MP_OBJ_NULL && (map)->table[pos].key != MP_OBJ_SENTINEL); }
    
    void mp_map_init(mp_map_t *map, int n);
    void mp_map_init_fixed_table(mp_map_t *map, int n, const mp_obj_t *table);
    mp_map_t *mp_map_new(int n);
    void mp_map_deinit(mp_map_t *map);
    void mp_map_free(mp_map_t *map);
    mp_map_elem_t* mp_map_lookup(mp_map_t *map, mp_obj_t index, mp_map_lookup_kind_t lookup_kind);
    void mp_map_clear(mp_map_t *map);
    void mp_map_dump(mp_map_t *map);
    
    // Underlying set implementation (not set object)
    
    typedef struct _mp_set_t {
        machine_uint_t alloc;
        machine_uint_t used;
        mp_obj_t *table;
    } mp_set_t;
    
    static inline bool MP_SET_SLOT_IS_FILLED(mp_set_t *set, machine_uint_t pos) { return ((set)->table[pos] != MP_OBJ_NULL && (set)->table[pos] != MP_OBJ_SENTINEL); }
    
    void mp_set_init(mp_set_t *set, int n);
    mp_obj_t mp_set_lookup(mp_set_t *set, mp_obj_t index, mp_map_lookup_kind_t lookup_kind);
    mp_obj_t mp_set_remove_first(mp_set_t *set);
    void mp_set_clear(mp_set_t *set);
    
    // Type definitions for methods
    
    typedef mp_obj_t (*mp_fun_0_t)(void);
    typedef mp_obj_t (*mp_fun_1_t)(mp_obj_t);
    typedef mp_obj_t (*mp_fun_2_t)(mp_obj_t, mp_obj_t);
    typedef mp_obj_t (*mp_fun_3_t)(mp_obj_t, mp_obj_t, mp_obj_t);
    typedef mp_obj_t (*mp_fun_t)(void);
    typedef mp_obj_t (*mp_fun_var_t)(uint n, const mp_obj_t *);
    typedef mp_obj_t (*mp_fun_kw_t)(uint n, const mp_obj_t *, mp_map_t *);
    
    typedef enum {
        PRINT_STR,
        PRINT_REPR,
        PRINT_EXC, // Special format for printing exception in unhandled exception message
    } mp_print_kind_t;
    
    typedef void (*mp_print_fun_t)(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o, mp_print_kind_t kind);
    typedef mp_obj_t (*mp_make_new_fun_t)(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args);
    typedef mp_obj_t (*mp_call_fun_t)(mp_obj_t fun, uint n_args, uint n_kw, const mp_obj_t *args);
    typedef mp_obj_t (*mp_unary_op_fun_t)(int op, mp_obj_t);
    typedef mp_obj_t (*mp_binary_op_fun_t)(int op, mp_obj_t, mp_obj_t);
    typedef void (*mp_load_attr_fun_t)(mp_obj_t self_in, qstr attr, mp_obj_t *dest); // for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self
    typedef bool (*mp_store_attr_fun_t)(mp_obj_t self_in, qstr attr, mp_obj_t value); // return true if store succeeded; if value==MP_OBJ_NULL then delete
    typedef bool (*mp_store_item_fun_t)(mp_obj_t self_in, mp_obj_t index, mp_obj_t value); // return true if store succeeded; if value==MP_OBJ_NULL then delete
    
    typedef struct _mp_method_t {
        qstr name;
        mp_const_obj_t fun;
    } mp_method_t;
    
    // Buffer protocol
    typedef struct _buffer_info_t {
        // if we'd bother to support various versions of structure
        // (with different number of fields), we can distinguish
        // them with ver = sizeof(struct). Cons: overkill for *micro*?
        //int ver; // ?
    
        void *buf;
        machine_int_t len;
    
        // Rationale: have array.array and have SIMD operations on them
        // Cons: users can pass item size to processing functions themselves,
        // though that's not "plug&play"
        // int itemsize;
    
        // Rationale: to load arbitrary-sized sprites directly to LCD
        // Cons: a bit adhoc usecase
        // int stride;
    } buffer_info_t;
    #define BUFFER_READ  (1)
    #define BUFFER_WRITE (2)
    #define BUFFER_RW (BUFFER_READ | BUFFER_WRITE)
    typedef struct _mp_buffer_p_t {
        machine_int_t (*get_buffer)(mp_obj_t obj, buffer_info_t *bufinfo, int flags);
    } mp_buffer_p_t;
    bool mp_get_buffer(mp_obj_t obj, buffer_info_t *bufinfo);
    void mp_get_buffer_raise(mp_obj_t obj, buffer_info_t *bufinfo);
    
    // Stream protocol
    typedef struct _mp_stream_p_t {
        // On error, functions should return -1 and fill in *errcode (values are
        // implementation-dependent, but will be exposed to user, e.g. via exception).
        machine_int_t (*read)(mp_obj_t obj, void *buf, machine_uint_t size, int *errcode);
        machine_int_t (*write)(mp_obj_t obj, const void *buf, machine_uint_t size, int *errcode);
        // add seek() ?
    } mp_stream_p_t;
    
    struct _mp_obj_type_t {
        mp_obj_base_t base;
        qstr name;
        mp_print_fun_t print;
        mp_make_new_fun_t make_new;     // to make an instance of the type
    
        mp_call_fun_t call;
        mp_unary_op_fun_t unary_op;     // can return NULL if op not supported
        mp_binary_op_fun_t binary_op;   // can return NULL if op not supported
    
        mp_load_attr_fun_t load_attr;
        mp_store_attr_fun_t store_attr; // if value is MP_OBJ_NULL, then delete that attribute
    
        // Implements container[index] = val.  If val == MP_OBJ_NULL, then it's a delete.
        // Note that load_item is implemented by binary_op(RT_BINARY_OP_SUBSCR)
        mp_store_item_fun_t store_item;
    
        mp_fun_1_t getiter;
        mp_fun_1_t iternext; // may return MP_OBJ_NULL as an optimisation instead of raising StopIteration() (with no args)
    
        // Alternatively, pointer(s) to interfaces to save space
        // in mp_obj_type_t at the expense of extra pointer and extra dereference
        // when actually used.
        mp_buffer_p_t buffer_p;
        const mp_stream_p_t *stream_p;
    
        // these are for dynamically created types (classes)
        mp_obj_t bases_tuple;
        mp_obj_t locals_dict;
    
        /*
        What we might need to add here:
    
        store_subscr    list dict
    
        len             str tuple list map
        abs             float complex
        hash            bool int none str
        equal           int str
    
        unpack seq      list tuple
        */
    };
    
    typedef struct _mp_obj_type_t mp_obj_type_t;
    
    // Constant types, globally accessible
    extern const mp_obj_type_t mp_type_type;
    extern const mp_obj_type_t mp_type_object;
    extern const mp_obj_type_t mp_type_NoneType;
    extern const mp_obj_type_t mp_type_bool;
    extern const mp_obj_type_t mp_type_int;
    extern const mp_obj_type_t mp_type_str;
    extern const mp_obj_type_t mp_type_bytes;
    extern const mp_obj_type_t mp_type_bytearray;
    extern const mp_obj_type_t mp_type_float;
    extern const mp_obj_type_t mp_type_complex;
    extern const mp_obj_type_t mp_type_tuple;
    extern const mp_obj_type_t mp_type_list;
    extern const mp_obj_type_t mp_type_map; // map (the python builtin, not the dict implementation detail)
    extern const mp_obj_type_t mp_type_enumerate;
    extern const mp_obj_type_t mp_type_filter;
    extern const mp_obj_type_t mp_type_dict;
    extern const mp_obj_type_t mp_type_range;
    extern const mp_obj_type_t mp_type_set;
    extern const mp_obj_type_t mp_type_slice;
    extern const mp_obj_type_t mp_type_zip;
    extern const mp_obj_type_t mp_type_array;
    extern const mp_obj_type_t mp_type_super;
    extern const mp_obj_type_t mp_type_gen_instance;
    extern const mp_obj_type_t mp_type_fun_native;
    extern const mp_obj_type_t mp_type_fun_bc;
    extern const mp_obj_type_t mp_type_module;
    extern const mp_obj_type_t mp_type_staticmethod;
    extern const mp_obj_type_t mp_type_classmethod;
    extern const mp_obj_type_t mp_type_property;
    
    // Exceptions
    extern const mp_obj_type_t mp_type_BaseException;
    extern const mp_obj_type_t mp_type_ArithmeticError;
    extern const mp_obj_type_t mp_type_AssertionError;
    extern const mp_obj_type_t mp_type_AttributeError;
    extern const mp_obj_type_t mp_type_EOFError;
    extern const mp_obj_type_t mp_type_Exception;
    extern const mp_obj_type_t mp_type_GeneratorExit;
    extern const mp_obj_type_t mp_type_IOError;
    extern const mp_obj_type_t mp_type_ImportError;
    extern const mp_obj_type_t mp_type_IndentationError;
    extern const mp_obj_type_t mp_type_IndexError;
    extern const mp_obj_type_t mp_type_KeyError;
    extern const mp_obj_type_t mp_type_LookupError;
    extern const mp_obj_type_t mp_type_MemoryError;
    extern const mp_obj_type_t mp_type_NameError;
    extern const mp_obj_type_t mp_type_NotImplementedError;
    extern const mp_obj_type_t mp_type_OSError;
    extern const mp_obj_type_t mp_type_OverflowError;
    extern const mp_obj_type_t mp_type_RuntimeError;
    extern const mp_obj_type_t mp_type_StopIteration;
    extern const mp_obj_type_t mp_type_SyntaxError;
    extern const mp_obj_type_t mp_type_SystemError;
    extern const mp_obj_type_t mp_type_TypeError;
    extern const mp_obj_type_t mp_type_ValueError;
    extern const mp_obj_type_t mp_type_ZeroDivisionError;
    
    // Constant objects, globally accessible
    // The macros are for convenience only
    #define mp_const_none ((mp_obj_t)&mp_const_none_obj)
    #define mp_const_false ((mp_obj_t)&mp_const_false_obj)
    #define mp_const_true ((mp_obj_t)&mp_const_true_obj)
    #define mp_const_empty_tuple ((mp_obj_t)&mp_const_empty_tuple_obj)
    extern const struct _mp_obj_none_t mp_const_none_obj;
    extern const struct _mp_obj_bool_t mp_const_false_obj;
    extern const struct _mp_obj_bool_t mp_const_true_obj;
    extern const struct _mp_obj_tuple_t mp_const_empty_tuple_obj;
    extern const struct _mp_obj_ellipsis_t mp_const_ellipsis_obj;
    extern const struct _mp_obj_exception_t mp_const_MemoryError_obj;
    extern const struct _mp_obj_exception_t mp_const_GeneratorExit_obj;
    
    // General API for objects
    
    mp_obj_t mp_obj_new_type(qstr name, mp_obj_t bases_tuple, mp_obj_t locals_dict);
    mp_obj_t mp_obj_new_none(void);
    mp_obj_t mp_obj_new_bool(bool value);
    mp_obj_t mp_obj_new_cell(mp_obj_t obj);
    mp_obj_t mp_obj_new_int(machine_int_t value);
    mp_obj_t mp_obj_new_int_from_uint(machine_uint_t value);
    mp_obj_t mp_obj_new_int_from_long_str(const char *s);
    mp_obj_t mp_obj_new_int_from_ll(long long val); // this must return a multi-precision integer object (or raise an overflow exception)
    mp_obj_t mp_obj_new_str(const byte* data, uint len, bool make_qstr_if_not_already);
    mp_obj_t mp_obj_new_bytes(const byte* data, uint len);
    #if MICROPY_ENABLE_FLOAT
    mp_obj_t mp_obj_new_float(mp_float_t val);
    mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag);
    #endif
    mp_obj_t mp_obj_new_exception(const mp_obj_type_t *exc_type);
    mp_obj_t mp_obj_new_exception_args(const mp_obj_type_t *exc_type, uint n_args, const mp_obj_t *args);
    mp_obj_t mp_obj_new_exception_msg(const mp_obj_type_t *exc_type, const char *msg);
    mp_obj_t mp_obj_new_exception_msg_varg(const mp_obj_type_t *exc_type, const char *fmt, ...); // counts args by number of % symbols in fmt, excluding %%; can only handle void* sizes (ie no float/double!)
    mp_obj_t mp_obj_new_fun_bc(uint scope_flags, qstr *args, uint n_args, mp_obj_t def_args, const byte *code);
    mp_obj_t mp_obj_new_fun_asm(uint n_args, void *fun);
    mp_obj_t mp_obj_new_gen_wrap(mp_obj_t fun);
    mp_obj_t mp_obj_new_closure(mp_obj_t fun, mp_obj_t closure_tuple);
    mp_obj_t mp_obj_new_tuple(uint n, const mp_obj_t *items);
    mp_obj_t mp_obj_new_list(uint n, mp_obj_t *items);
    mp_obj_t mp_obj_new_dict(int n_args);
    mp_obj_t mp_obj_new_set(int n_args, mp_obj_t *items);
    mp_obj_t mp_obj_new_slice(mp_obj_t start, mp_obj_t stop, mp_obj_t step);
    mp_obj_t mp_obj_new_super(mp_obj_t type, mp_obj_t obj);
    mp_obj_t mp_obj_new_bound_meth(mp_obj_t meth, mp_obj_t self);
    mp_obj_t mp_obj_new_getitem_iter(mp_obj_t *args);
    mp_obj_t mp_obj_new_module(qstr module_name);
    
    mp_obj_type_t *mp_obj_get_type(mp_obj_t o_in);
    const char *mp_obj_get_type_str(mp_obj_t o_in);
    bool mp_obj_is_subclass_fast(mp_const_obj_t object, mp_const_obj_t classinfo); // arguments should be type objects
    
    void mp_obj_print_helper(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o_in, mp_print_kind_t kind);
    void mp_obj_print(mp_obj_t o, mp_print_kind_t kind);
    void mp_obj_print_exception(mp_obj_t exc);
    
    int mp_obj_is_true(mp_obj_t arg);
    
    // TODO make these all lower case when they have proven themselves
    static inline bool MP_OBJ_IS_OBJ(mp_const_obj_t o) { return ((((mp_small_int_t)(o)) & 3) == 0); }
    static inline bool MP_OBJ_IS_SMALL_INT(mp_const_obj_t o) { return ((((mp_small_int_t)(o)) & 1) != 0); }
    //static inline bool MP_OBJ_IS_TYPE(mp_const_obj_t o, const mp_obj_type_t *t) { return (MP_OBJ_IS_OBJ(o) && (((mp_obj_base_t*)(o))->type == (t))); } // this does not work for checking a string, use below macro for that
    //static inline bool MP_OBJ_IS_INT(mp_const_obj_t o) { return (MP_OBJ_IS_SMALL_INT(o) || MP_OBJ_IS_TYPE(o, &mp_type_int)); } // returns true if o is a small int or long int
    static inline bool mp_obj_is_integer(mp_const_obj_t o) { return MP_OBJ_IS_INT(o) || MP_OBJ_IS_TYPE(o, &mp_type_bool); } // returns true if o is bool, small int or long int
    static inline bool MP_OBJ_IS_QSTR(mp_const_obj_t o) { return ((((mp_small_int_t)(o)) & 3) == 2); }
    //static inline bool MP_OBJ_IS_STR(mp_const_obj_t o) { return (MP_OBJ_IS_QSTR(o) || MP_OBJ_IS_TYPE(o, &mp_type_str)); }
    
    bool mp_obj_is_callable(mp_obj_t o_in);
    machine_int_t mp_obj_hash(mp_obj_t o_in);
    bool mp_obj_equal(mp_obj_t o1, mp_obj_t o2);
    
    machine_int_t mp_obj_get_int(mp_obj_t arg);
    bool mp_obj_get_int_maybe(mp_obj_t arg, machine_int_t *value);
    #if MICROPY_ENABLE_FLOAT
    mp_float_t mp_obj_get_float(mp_obj_t self_in);
    void mp_obj_get_complex(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag);
    #endif
    //qstr mp_obj_get_qstr(mp_obj_t arg);
    void mp_obj_get_array(mp_obj_t o, uint *len, mp_obj_t **items);
    void mp_obj_get_array_fixed_n(mp_obj_t o, uint len, mp_obj_t **items);
    uint mp_get_index(const mp_obj_type_t *type, machine_uint_t len, mp_obj_t index, bool is_slice);
    mp_obj_t mp_obj_len_maybe(mp_obj_t o_in); /* may return MP_OBJ_NULL */
    
    // bool
    // TODO make lower case when it has proven itself
    static inline mp_obj_t MP_BOOL(machine_int_t x) { return x ? mp_const_true : mp_const_false; }
    
    // cell
    mp_obj_t mp_obj_cell_get(mp_obj_t self_in);
    void mp_obj_cell_set(mp_obj_t self_in, mp_obj_t obj);
    
    // int
    // For long int, returns value truncated to machine_int_t
    machine_int_t mp_obj_int_get(mp_obj_t self_in);
    #if MICROPY_ENABLE_FLOAT
    mp_float_t mp_obj_int_as_float(mp_obj_t self_in);
    #endif
    // Will rains exception if value doesn't fit into machine_int_t
    machine_int_t mp_obj_int_get_checked(mp_obj_t self_in);
    
    // exception
    bool mp_obj_is_exception_type(mp_obj_t self_in);
    bool mp_obj_is_exception_instance(mp_obj_t self_in);
    bool mp_obj_exception_match(mp_obj_t exc, const mp_obj_type_t *exc_type);
    void mp_obj_exception_clear_traceback(mp_obj_t self_in);
    void mp_obj_exception_add_traceback(mp_obj_t self_in, qstr file, machine_uint_t line, qstr block);
    void mp_obj_exception_get_traceback(mp_obj_t self_in, machine_uint_t *n, machine_uint_t **values);
    mp_obj_t mp_obj_exception_get_value(mp_obj_t self_in);
    
    // str
    mp_obj_t mp_obj_str_builder_start(const mp_obj_type_t *type, uint len, byte **data);
    mp_obj_t mp_obj_str_builder_end(mp_obj_t o_in);
    bool mp_obj_str_equal(mp_obj_t s1, mp_obj_t s2);
    uint mp_obj_str_get_hash(mp_obj_t self_in);
    uint mp_obj_str_get_len(mp_obj_t self_in);
    qstr mp_obj_str_get_qstr(mp_obj_t self_in); // use this if you will anyway convert the string to a qstr
    const char *mp_obj_str_get_str(mp_obj_t self_in); // use this only if you need the string to be null terminated
    const char *mp_obj_str_get_data(mp_obj_t self_in, uint *len);
    void mp_str_print_quoted(void (*print)(void *env, const char *fmt, ...), void *env, const byte *str_data, uint str_len);
    
    #if MICROPY_ENABLE_FLOAT
    // float
    typedef struct _mp_obj_float_t {
        mp_obj_base_t base;
        mp_float_t value;
    } mp_obj_float_t;
    mp_float_t mp_obj_float_get(mp_obj_t self_in);
    mp_obj_t mp_obj_float_binary_op(int op, mp_float_t lhs_val, mp_obj_t rhs); // can return MP_OBJ_NULL
    
    // complex
    void mp_obj_complex_get(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag);
    mp_obj_t mp_obj_complex_binary_op(int op, mp_float_t lhs_real, mp_float_t lhs_imag, mp_obj_t rhs_in); // can return MP_OBJ_NULL
    #endif
    
    // tuple
    void mp_obj_tuple_get(mp_obj_t self_in, uint *len, mp_obj_t **items);
    void mp_obj_tuple_del(mp_obj_t self_in);
    machine_int_t mp_obj_tuple_hash(mp_obj_t self_in);
    mp_obj_t mp_obj_tuple_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args);
    
    // list
    struct _mp_obj_list_t;
    void mp_obj_list_init(struct _mp_obj_list_t *o, uint n);
    mp_obj_t mp_obj_list_append(mp_obj_t self_in, mp_obj_t arg);
    void mp_obj_list_get(mp_obj_t self_in, uint *len, mp_obj_t **items);
    void mp_obj_list_set_len(mp_obj_t self_in, uint len);
    void mp_obj_list_store(mp_obj_t self_in, mp_obj_t index, mp_obj_t value);
    mp_obj_t mp_obj_list_sort(uint n_args, const mp_obj_t *args, mp_map_t *kwargs);
    
    // dict
    typedef struct _mp_obj_dict_t {
        mp_obj_base_t base;
        mp_map_t map;
    } mp_obj_dict_t;
    void mp_obj_dict_init(mp_obj_dict_t *dict, int n_args);
    uint mp_obj_dict_len(mp_obj_t self_in);
    mp_obj_t mp_obj_dict_store(mp_obj_t self_in, mp_obj_t key, mp_obj_t value);
    mp_obj_t mp_obj_dict_delete(mp_obj_t self_in, mp_obj_t key);
    mp_map_t *mp_obj_dict_get_map(mp_obj_t self_in);
    
    // set
    void mp_obj_set_store(mp_obj_t self_in, mp_obj_t item);
    
    // slice
    void mp_obj_slice_get(mp_obj_t self_in, machine_int_t *start, machine_int_t *stop, machine_int_t *step);
    
    // array
    uint mp_obj_array_len(mp_obj_t self_in);
    mp_obj_t mp_obj_new_bytearray_by_ref(uint n, void *items);
    
    // functions
    #define MP_OBJ_FUN_ARGS_MAX (0xffff) // to set maximum value in n_args_max below
    typedef struct _mp_obj_fun_native_t { // need this so we can define const objects (to go in ROM)
        mp_obj_base_t base;
        bool is_kw : 1;
        uint n_args_min : 15; // inclusive
        uint n_args_max : 16; // inclusive
        void *fun;
        // TODO add mp_map_t *globals
        // for const function objects, make an empty, const map
        // such functions won't be able to access the global scope, but that's probably okay
    } mp_obj_fun_native_t;
    
    void mp_obj_fun_bc_get(mp_obj_t self_in, int *n_args, const byte **code);
    bool mp_obj_fun_prepare_simple_args(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args,
                                uint *out_args1_len, const mp_obj_t **out_args1, uint *out_args2_len, const mp_obj_t **out_args2);
    
    mp_obj_t mp_identity(mp_obj_t self);
    MP_DECLARE_CONST_FUN_OBJ(mp_identity_obj);
    
    // module
    typedef struct _mp_obj_module_t {
        mp_obj_base_t base;
        qstr name;
        mp_obj_dict_t *globals;
    } mp_obj_module_t;
    mp_obj_dict_t *mp_obj_module_get_globals(mp_obj_t self_in);
    
    // staticmethod and classmethod types; defined here so we can make const versions
    // this structure is used for instances of both staticmethod and classmethod
    typedef struct _mp_obj_static_class_method_t {
        mp_obj_base_t base;
        mp_obj_t fun;
    } mp_obj_static_class_method_t;
    
    // property
    const mp_obj_t *mp_obj_property_get(mp_obj_t self_in);
    
    // sequence helpers
    void mp_seq_multiply(const void *items, uint item_sz, uint len, uint times, void *dest);
    bool m_seq_get_fast_slice_indexes(machine_uint_t len, mp_obj_t slice, machine_uint_t *begin, machine_uint_t *end);
    #define m_seq_copy(dest, src, len, item_t) memcpy(dest, src, len * sizeof(item_t))
    #define m_seq_cat(dest, src1, len1, src2, len2, item_t) { memcpy(dest, src1, (len1) * sizeof(item_t)); memcpy(dest + (len1), src2, (len2) * sizeof(item_t)); }
    bool mp_seq_cmp_bytes(int op, const byte *data1, uint len1, const byte *data2, uint len2);
    bool mp_seq_cmp_objs(int op, const mp_obj_t *items1, uint len1, const mp_obj_t *items2, uint len2);
    mp_obj_t mp_seq_index_obj(const mp_obj_t *items, uint len, uint n_args, const mp_obj_t *args);
    mp_obj_t mp_seq_count_obj(const mp_obj_t *items, uint len, mp_obj_t value);