Skip to content
Snippets Groups Projects
Select Git revision
  • 4d7be7df9d41f769a4c783604dc15d88c7dcddaa
  • master default protected
  • ws2812_docs_work
  • ws2812_module_work
  • genofire/ble-card10-timeread
  • schneider/fundamental-test
  • schneider/ble-buffers
  • ios-workarounds
  • schneider/maxim-sdk-update
  • rahix/simple_menu
  • ch3/splashscreen
  • koalo/bhi160-works-but-dirty
  • koalo/wip/i2c-for-python
  • renze/safe_mode
  • renze/hatchery_apps
  • koalo/factory-reset
  • msgctl/gfx_rle
  • msgctl/faultscreen
  • msgctl/textbuffer_api
  • schneider/bonding
  • schneider/bootloader-update-9a0d158
  • v1.5
  • v1.4
  • v1.3
  • v1.2
  • v1.1
  • v1.0
  • release-1
  • bootloader-v1
  • v0.0
30 results

init.gdb

Blame
  • Forked from card10 / firmware
    Source project has a limited visibility.
    vfs.c 11.17 KiB
    /*
     * This file is part of the MicroPython project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2017 Damien P. George
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <stdint.h>
    #include <string.h>
    
    #include "py/runtime.h"
    #include "py/objstr.h"
    #include "py/mperrno.h"
    #include "extmod/vfs.h"
    
    #if MICROPY_VFS
    
    #if MICROPY_VFS_FAT
    #include "extmod/vfs_fat.h"
    #endif
    
    // path is the path to lookup and *path_out holds the path within the VFS
    // object (starts with / if an absolute path).
    // Returns MP_VFS_ROOT for root dir (and then path_out is undefined) and
    // MP_VFS_NONE for path not found.
    mp_vfs_mount_t *mp_vfs_lookup_path(const char *path, const char **path_out) {
        if (path[0] == '/' && path[1] == 0) {
            return MP_VFS_ROOT;
        } else if (MP_STATE_VM(vfs_cur) == MP_VFS_ROOT) {
            // in root dir
            if (path[0] == 0) {
                return MP_VFS_ROOT;
            }
        } else if (*path != '/') {
            // a relative path within a mounted device
            *path_out = path;
            return MP_STATE_VM(vfs_cur);
        }
    
        for (mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table); vfs != NULL; vfs = vfs->next) {
            if (strncmp(path, vfs->str, vfs->len) == 0) {
                if (path[vfs->len] == '/') {
                    *path_out = path + vfs->len;
                    return vfs;
                } else if (path[vfs->len] == '\0') {
                    *path_out = "/";
                    return vfs;
                }
            }
        }
    
        // mount point not found
        return MP_VFS_NONE;
    }
    
    // Version of mp_vfs_lookup_path that takes and returns uPy string objects.
    STATIC mp_vfs_mount_t *lookup_path(mp_obj_t path_in, mp_obj_t *path_out) {
        const char *path = mp_obj_str_get_str(path_in);
        const char *p_out;
        mp_vfs_mount_t *vfs = mp_vfs_lookup_path(path, &p_out);
        if (vfs != MP_VFS_NONE && vfs != MP_VFS_ROOT) {
            *path_out = mp_obj_new_str_of_type(mp_obj_get_type(path_in),
                (const byte*)p_out, strlen(p_out));
        }
        return vfs;
    }
    
    STATIC mp_obj_t mp_vfs_proxy_call(mp_vfs_mount_t *vfs, qstr meth_name, size_t n_args, const mp_obj_t *args) {
        if (vfs == MP_VFS_NONE) {
            // mount point not found
            mp_raise_OSError(MP_ENODEV);
        }
        if (vfs == MP_VFS_ROOT) {
            // can't do operation on root dir
            mp_raise_OSError(MP_EPERM);
        }
        mp_obj_t meth[n_args + 2];
        mp_load_method(vfs->obj, meth_name, meth);
        if (args != NULL) {
            memcpy(meth + 2, args, n_args * sizeof(*args));
        }
        return mp_call_method_n_kw(n_args, 0, meth);
    }
    
    mp_import_stat_t mp_vfs_import_stat(const char *path) {
        const char *path_out;
        mp_vfs_mount_t *vfs = mp_vfs_lookup_path(path, &path_out);
        if (vfs == MP_VFS_NONE || vfs == MP_VFS_ROOT) {
            return MP_IMPORT_STAT_NO_EXIST;
        }
        #if MICROPY_VFS_FAT
        // fast paths for known VFS types
        if (mp_obj_get_type(vfs->obj) == &mp_fat_vfs_type) {
            return fat_vfs_import_stat(MP_OBJ_TO_PTR(vfs->obj), path_out);
        }
        #endif
        // TODO delegate to vfs.stat() method
        return MP_IMPORT_STAT_NO_EXIST;
    }
    
    mp_obj_t mp_vfs_mount(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
        enum { ARG_readonly, ARG_mkfs };
        static const mp_arg_t allowed_args[] = {
            { MP_QSTR_readonly, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_false} },
            { MP_QSTR_mkfs, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_false} },
        };
    
        // parse args
        mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
        mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
    
        // get the mount point
        mp_uint_t mnt_len;
        const char *mnt_str = mp_obj_str_get_data(pos_args[1], &mnt_len);
    
        // see if we need to auto-detect and create the filesystem
        mp_obj_t vfs_obj = pos_args[0];
        mp_obj_t dest[2];
        mp_load_method_maybe(vfs_obj, MP_QSTR_mount, dest);
        if (dest[0] == MP_OBJ_NULL) {
            // Input object has no mount method, assume it's a block device and try to
            // auto-detect the filesystem and create the corresponding VFS entity.
            // (At the moment we only support FAT filesystems.)
            #if MICROPY_VFS_FAT
            vfs_obj = mp_fat_vfs_type.make_new(&mp_fat_vfs_type, 1, 0, &vfs_obj);
            #endif
        }
    
        // create new object
        mp_vfs_mount_t *vfs = m_new_obj(mp_vfs_mount_t);
        vfs->str = mnt_str;
        vfs->len = mnt_len;
        vfs->obj = vfs_obj;
        vfs->next = NULL;
    
        // call the underlying object to do any mounting operation
        mp_vfs_proxy_call(vfs, MP_QSTR_mount, 2, (mp_obj_t*)&args);
    
        // check that the destination mount point is unused
        const char *path_out;
        if (mp_vfs_lookup_path(mp_obj_str_get_str(pos_args[1]), &path_out) != MP_VFS_NONE) {
            mp_raise_OSError(MP_EPERM);
        }
    
        // insert the vfs into the mount table
        mp_vfs_mount_t **vfsp = &MP_STATE_VM(vfs_mount_table);
        while (*vfsp != NULL) {
            vfsp = &(*vfsp)->next;
        }
        *vfsp = vfs;
    
        return mp_const_none;
    }
    MP_DEFINE_CONST_FUN_OBJ_KW(mp_vfs_mount_obj, 2, mp_vfs_mount);
    
    mp_obj_t mp_vfs_umount(mp_obj_t mnt_in) {
        // remove vfs from the mount table
        mp_vfs_mount_t *vfs = NULL;
        mp_uint_t mnt_len;
        const char *mnt_str = NULL;
        if (MP_OBJ_IS_STR(mnt_in)) {
            mnt_str = mp_obj_str_get_data(mnt_in, &mnt_len);
        }
        for (mp_vfs_mount_t **vfsp = &MP_STATE_VM(vfs_mount_table); *vfsp != NULL; vfsp = &(*vfsp)->next) {
            if ((mnt_str != NULL && !memcmp(mnt_str, (*vfsp)->str, mnt_len + 1)) || (*vfsp)->obj == mnt_in) {
                vfs = *vfsp;
                *vfsp = (*vfsp)->next;
                break;
            }
        }
    
        if (vfs == NULL) {
            mp_raise_OSError(MP_EINVAL);
        }
    
        // if we unmounted the current device then set current to root
        if (MP_STATE_VM(vfs_cur) == vfs) {
            MP_STATE_VM(vfs_cur) = MP_VFS_ROOT;
        }
    
        // call the underlying object to do any unmounting operation
        mp_vfs_proxy_call(vfs, MP_QSTR_umount, 0, NULL);
    
        return mp_const_none;
    }
    MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_umount_obj, mp_vfs_umount);
    
    mp_obj_t mp_vfs_open(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
        enum { ARG_file, ARG_mode, ARG_encoding };
        static const mp_arg_t allowed_args[] = {
            { MP_QSTR_file, MP_ARG_OBJ | MP_ARG_REQUIRED, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
            { MP_QSTR_mode, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_QSTR(MP_QSTR_r)} },
        };
    
        // parse args
        mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
        mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
    
        mp_vfs_mount_t *vfs = lookup_path((mp_obj_t)args[ARG_file].u_rom_obj, &args[ARG_file].u_obj);
        return mp_vfs_proxy_call(vfs, MP_QSTR_open, 2, (mp_obj_t*)&args);
    }
    MP_DEFINE_CONST_FUN_OBJ_KW(mp_vfs_open_obj, 0, mp_vfs_open);
    
    mp_obj_t mp_vfs_chdir(mp_obj_t path_in) {
        mp_obj_t path_out;
        mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out);
        if (vfs != MP_VFS_ROOT) {
            mp_vfs_proxy_call(vfs, MP_QSTR_chdir, 1, &path_out);
        }
        MP_STATE_VM(vfs_cur) = vfs;
        return mp_const_none;
    }
    MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_chdir_obj, mp_vfs_chdir);
    
    mp_obj_t mp_vfs_getcwd(void) {
        if (MP_STATE_VM(vfs_cur) == MP_VFS_ROOT) {
            return MP_OBJ_NEW_QSTR(MP_QSTR__slash_);
        }
        mp_obj_t cwd_o = mp_vfs_proxy_call(MP_STATE_VM(vfs_cur), MP_QSTR_getcwd, 0, NULL);
        const char *cwd = mp_obj_str_get_str(cwd_o);
        vstr_t vstr;
        vstr_init(&vstr, MP_STATE_VM(vfs_cur)->len + strlen(cwd) + 1);
        vstr_add_strn(&vstr, MP_STATE_VM(vfs_cur)->str, MP_STATE_VM(vfs_cur)->len);
        if (!(cwd[0] == '/' && cwd[1] == 0)) {
            vstr_add_str(&vstr, cwd);
        }
        return mp_obj_new_str_from_vstr(&mp_type_str, &vstr);
    }
    MP_DEFINE_CONST_FUN_OBJ_0(mp_vfs_getcwd_obj, mp_vfs_getcwd);
    
    mp_obj_t mp_vfs_listdir(size_t n_args, const mp_obj_t *args) {
        mp_obj_t path_in;
        if (n_args == 1) {
            path_in = args[0];
        } else {
            path_in = MP_OBJ_NEW_QSTR(MP_QSTR_);
        }
    
        mp_obj_t path_out;
        mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out);
    
        if (vfs == MP_VFS_ROOT) {
            // list the root directory
            mp_obj_t dir_list = mp_obj_new_list(0, NULL);
            for (vfs = MP_STATE_VM(vfs_mount_table); vfs != NULL; vfs = vfs->next) {
                mp_obj_list_append(dir_list, mp_obj_new_str_of_type(mp_obj_get_type(path_in),
                    (const byte*)vfs->str + 1, vfs->len - 1));
            }
            return dir_list;
        }
    
        return mp_vfs_proxy_call(vfs, MP_QSTR_listdir, 1, &path_out);
    }
    MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_vfs_listdir_obj, 0, 1, mp_vfs_listdir);
    
    mp_obj_t mp_vfs_mkdir(mp_obj_t path_in) {
        mp_obj_t path_out;
        mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out);
        return mp_vfs_proxy_call(vfs, MP_QSTR_mkdir, 1, &path_out);
    }
    MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_mkdir_obj, mp_vfs_mkdir);
    
    mp_obj_t mp_vfs_remove(mp_obj_t path_in) {
        mp_obj_t path_out;
        mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out);
        return mp_vfs_proxy_call(vfs, MP_QSTR_remove, 1, &path_out);
    }
    MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_remove_obj, mp_vfs_remove);
    
    mp_obj_t mp_vfs_rename(mp_obj_t old_path_in, mp_obj_t new_path_in) {
        mp_obj_t args[2];
        mp_vfs_mount_t *old_vfs = lookup_path(old_path_in, &args[0]);
        mp_vfs_mount_t *new_vfs = lookup_path(new_path_in, &args[1]);
        if (old_vfs != new_vfs) {
            // can't rename across filesystems
            mp_raise_OSError(MP_EPERM);
        }
        return mp_vfs_proxy_call(old_vfs, MP_QSTR_rename, 2, args);
    }
    MP_DEFINE_CONST_FUN_OBJ_2(mp_vfs_rename_obj, mp_vfs_rename);
    
    mp_obj_t mp_vfs_rmdir(mp_obj_t path_in) {
        mp_obj_t path_out;
        mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out);
        return mp_vfs_proxy_call(vfs, MP_QSTR_rmdir, 1, &path_out);
    }
    MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_rmdir_obj, mp_vfs_rmdir);
    
    mp_obj_t mp_vfs_stat(mp_obj_t path_in) {
        mp_obj_t path_out;
        mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out);
        return mp_vfs_proxy_call(vfs, MP_QSTR_stat, 1, &path_out);
    }
    MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_stat_obj, mp_vfs_stat);
    
    mp_obj_t mp_vfs_statvfs(mp_obj_t path_in) {
        mp_obj_t path_out;
        mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out);
        return mp_vfs_proxy_call(vfs, MP_QSTR_statvfs, 1, &path_out);
    }
    MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_statvfs_obj, mp_vfs_statvfs);
    
    #endif // MICROPY_VFS