Skip to content
Snippets Groups Projects
Select Git revision
  • b545c16dba3f2e07bbfb0020c1dc8637594ffa90
  • master default protected
  • backslash
  • nickname-match-configs
  • genofire/leds_rgb_get_state
  • genofire/rockets-state
  • genofire/ble-follow-py
  • plaetzchen/ios-workaround
  • blinkisync-as-preload
  • genofire/haule-ble-fs-deactive
  • schneider/max30001-pycardium
  • schneider/max30001-epicaridum
  • schneider/max30001
  • schneider/stream-locks
  • ios-workarounds
  • schneider/fundamental-test
  • schneider/ble-buffers
  • schneider/maxim-sdk-update
  • ch3/splashscreen
  • koalo/bhi160-works-but-dirty
  • koalo/wip/i2c-for-python
  • v1.9
  • v1.8
  • v1.7
  • v1.6
  • v1.5
  • v1.4
  • v1.3
  • v1.2
  • v1.1
  • v1.0
  • release-1
  • bootloader-v1
  • v0.0
34 results

epicardium.h

Blame
  • Forked from card10 / firmware
    Source project has a limited visibility.
    main.c 7.30 KiB
    #include <stdint.h>
    #include <stdio.h>
    #include <string.h>
    
    #include "py/nlr.h"
    #include "py/compile.h"
    #include "py/runtime.h"
    #include "py/repl.h"
    #include "py/gc.h"
    #include "py/mperrno.h"
    #include "lib/utils/pyexec.h"
    
    #if MICROPY_ENABLE_COMPILER
    void do_str(const char *src, mp_parse_input_kind_t input_kind) {
        nlr_buf_t nlr;
        if (nlr_push(&nlr) == 0) {
            mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0);
            qstr source_name = lex->source_name;
            mp_parse_tree_t parse_tree = mp_parse(lex, input_kind);
            mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, true);
            mp_call_function_0(module_fun);
            nlr_pop();
        } else {
            // uncaught exception
            mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
        }
    }
    #endif
    
    static char *stack_top;
    static char heap[2048];
    
    int main(int argc, char **argv) {
        int stack_dummy;
        stack_top = (char*)&stack_dummy;
    
        #if MICROPY_ENABLE_GC
        gc_init(heap, heap + sizeof(heap));
        #endif
        mp_init();
        #if MICROPY_ENABLE_COMPILER
        #if MICROPY_REPL_EVENT_DRIVEN
        pyexec_event_repl_init();
        for (;;) {
            int c = mp_hal_stdin_rx_chr();
            if (pyexec_event_repl_process_char(c)) {
                break;
            }
        }
        #else
        pyexec_friendly_repl();
        #endif
        //do_str("print('hello world!', list(x+1 for x in range(10)), end='eol\\n')", MP_PARSE_SINGLE_INPUT);
        //do_str("for i in range(10):\r\n  print(i)", MP_PARSE_FILE_INPUT);
        #else
        pyexec_frozen_module("frozentest.py");
        #endif
        mp_deinit();
        return 0;
    }
    
    void gc_collect(void) {
        // WARNING: This gc_collect implementation doesn't try to get root
        // pointers from CPU registers, and thus may function incorrectly.
        void *dummy;
        gc_collect_start();
        gc_collect_root(&dummy, ((mp_uint_t)stack_top - (mp_uint_t)&dummy) / sizeof(mp_uint_t));
        gc_collect_end();
        gc_dump_info();
    }
    
    mp_lexer_t *mp_lexer_new_from_file(const char *filename) {
        mp_raise_OSError(MP_ENOENT);
    }
    
    mp_import_stat_t mp_import_stat(const char *path) {
        return MP_IMPORT_STAT_NO_EXIST;
    }
    
    mp_obj_t mp_builtin_open(uint n_args, const mp_obj_t *args, mp_map_t *kwargs) {
        return mp_const_none;
    }
    MP_DEFINE_CONST_FUN_OBJ_KW(mp_builtin_open_obj, 1, mp_builtin_open);
    
    void nlr_jump_fail(void *val) {
        while (1);
    }
    
    void NORETURN __fatal_error(const char *msg) {
        while (1);
    }
    
    #ifndef NDEBUG
    void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
        printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
        __fatal_error("Assertion failed");
    }
    #endif
    
    #if MICROPY_MIN_USE_CORTEX_CPU
    
    // this is a minimal IRQ and reset framework for any Cortex-M CPU
    
    extern uint32_t _estack, _sidata, _sdata, _edata, _sbss, _ebss;
    
    void Reset_Handler(void) __attribute__((naked));
    void Reset_Handler(void) {
        // set stack pointer
        __asm volatile ("ldr sp, =_estack");
        // copy .data section from flash to RAM
        for (uint32_t *src = &_sidata, *dest = &_sdata; dest < &_edata;) {
            *dest++ = *src++;
        }
        // zero out .bss section
        for (uint32_t *dest = &_sbss; dest < &_ebss;) {
            *dest++ = 0;
        }
        // jump to board initialisation
        void _start(void);
        _start();
    }
    
    void Default_Handler(void) {
        for (;;) {
        }
    }
    
    const uint32_t isr_vector[] __attribute__((section(".isr_vector"))) = {
        (uint32_t)&_estack,
        (uint32_t)&Reset_Handler,
        (uint32_t)&Default_Handler, // NMI_Handler
        (uint32_t)&Default_Handler, // HardFault_Handler
        (uint32_t)&Default_Handler, // MemManage_Handler
        (uint32_t)&Default_Handler, // BusFault_Handler
        (uint32_t)&Default_Handler, // UsageFault_Handler
        0,
        0,
        0,
        0,
        (uint32_t)&Default_Handler, // SVC_Handler
        (uint32_t)&Default_Handler, // DebugMon_Handler
        0,
        (uint32_t)&Default_Handler, // PendSV_Handler
        (uint32_t)&Default_Handler, // SysTick_Handler
    };
    
    void _start(void) {
        // when we get here: stack is initialised, bss is clear, data is copied
    
        // SCB->CCR: enable 8-byte stack alignment for IRQ handlers, in accord with EABI
        *((volatile uint32_t*)0xe000ed14) |= 1 << 9;
    
        // initialise the cpu and peripherals
        #if MICROPY_MIN_USE_STM32_MCU
        void stm32_init(void);
        stm32_init();
        #endif
    
        // now that we have a basic system up and running we can call main
        main(0, NULL);
    
        // we must not return
        for (;;) {
        }
    }
    
    #endif
    
    #if MICROPY_MIN_USE_STM32_MCU
    
    // this is minimal set-up code for an STM32 MCU
    
    typedef struct {
        volatile uint32_t CR;
        volatile uint32_t PLLCFGR;
        volatile uint32_t CFGR;
        volatile uint32_t CIR;
        uint32_t _1[8];
        volatile uint32_t AHB1ENR;
        volatile uint32_t AHB2ENR;
        volatile uint32_t AHB3ENR;
        uint32_t _2;
        volatile uint32_t APB1ENR;
        volatile uint32_t APB2ENR;
    } periph_rcc_t;
    
    typedef struct {
        volatile uint32_t MODER;
        volatile uint32_t OTYPER;
        volatile uint32_t OSPEEDR;
        volatile uint32_t PUPDR;
        volatile uint32_t IDR;
        volatile uint32_t ODR;
        volatile uint16_t BSRRL;
        volatile uint16_t BSRRH;
        volatile uint32_t LCKR;
        volatile uint32_t AFR[2];
    } periph_gpio_t;
    
    typedef struct {
        volatile uint32_t SR;
        volatile uint32_t DR;
        volatile uint32_t BRR;
        volatile uint32_t CR1;
    } periph_uart_t;
    
    #define USART1 ((periph_uart_t*) 0x40011000)
    #define GPIOA  ((periph_gpio_t*) 0x40020000)
    #define GPIOB  ((periph_gpio_t*) 0x40020400)
    #define RCC    ((periph_rcc_t*)  0x40023800)
    
    // simple GPIO interface
    #define GPIO_MODE_IN (0)
    #define GPIO_MODE_OUT (1)
    #define GPIO_MODE_ALT (2)
    #define GPIO_PULL_NONE (0)
    #define GPIO_PULL_UP (0)
    #define GPIO_PULL_DOWN (1)
    void gpio_init(periph_gpio_t *gpio, int pin, int mode, int pull, int alt) {
        gpio->MODER = (gpio->MODER & ~(3 << (2 * pin))) | (mode << (2 * pin));
        // OTYPER is left as default push-pull
        // OSPEEDR is left as default low speed
        gpio->PUPDR = (gpio->PUPDR & ~(3 << (2 * pin))) | (pull << (2 * pin));
        gpio->AFR[pin >> 3] = (gpio->AFR[pin >> 3] & ~(15 << (4 * (pin & 7)))) | (alt << (4 * (pin & 7)));
    }
    #define gpio_get(gpio, pin) ((gpio->IDR >> (pin)) & 1)
    #define gpio_set(gpio, pin, value) do { gpio->ODR = (gpio->ODR & ~(1 << (pin))) | (value << pin); } while (0)
    #define gpio_low(gpio, pin) do { gpio->BSRRH = (1 << (pin)); } while (0)
    #define gpio_high(gpio, pin) do { gpio->BSRRL = (1 << (pin)); } while (0)
    
    void stm32_init(void) {
        // basic MCU config
        RCC->CR |= (uint32_t)0x00000001; // set HSION
        RCC->CFGR = 0x00000000; // reset all
        RCC->CR &= (uint32_t)0xfef6ffff; // reset HSEON, CSSON, PLLON
        RCC->PLLCFGR = 0x24003010; // reset PLLCFGR
        RCC->CR &= (uint32_t)0xfffbffff; // reset HSEBYP
        RCC->CIR = 0x00000000; // disable IRQs
    
        // leave the clock as-is (internal 16MHz)
    
        // enable GPIO clocks
        RCC->AHB1ENR |= 0x00000003; // GPIOAEN, GPIOBEN
    
        // turn on an LED! (on pyboard it's the red one)
        gpio_init(GPIOA, 13, GPIO_MODE_OUT, GPIO_PULL_NONE, 0);
        gpio_high(GPIOA, 13);
    
        // enable UART1 at 9600 baud (TX=B6, RX=B7)
        gpio_init(GPIOB, 6, GPIO_MODE_ALT, GPIO_PULL_NONE, 7);
        gpio_init(GPIOB, 7, GPIO_MODE_ALT, GPIO_PULL_NONE, 7);
        RCC->APB2ENR |= 0x00000010; // USART1EN
        USART1->BRR = (104 << 4) | 3; // 16MHz/(16*104.1875) = 9598 baud
        USART1->CR1 = 0x0000200c; // USART enable, tx enable, rx enable
    }
    
    #endif