Newer
Older
#include "gfx.h"
#include "framebuffer.h"
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
const struct gfx_color_rgb gfx_colors_rgb[COLORS] = {
{ 255, 255, 255 }, /* WHITE */
{ 0, 0, 0 }, /* BLACK */
{ 255, 0, 0 }, /* RED */
{ 0, 255, 0 }, /* GREEN */
{ 0, 0, 255 }, /* BLUE */
{ 255, 255, 0 } /* YELLOW */
};
void gfx_setpixel(struct gfx_region *r, int x, int y, Color c)
{
if (x < 0 || y < 0)
return;
if (x >= r->width || y >= r->height)
return;
fb_setpixel(r->fb, r->x + x, r->y + y, c);
}
struct gfx_region gfx_screen(struct framebuffer *fb)
{
struct gfx_region r = { .fb = fb,
.x = 0,
.y = 0,
.width = fb->width,
.height = fb->height };
return r;
}
static inline int letter_bit(const sFONT *font, char c, int x, int y)
{
if (x < 0 || y < 0)
return 0;
if (x >= font->Width || y >= font->Height)
return 0;
if (c < ' ' || c > '~')
return 0;
size_t bytes_per_row = font->Width / 8 + 1;
size_t bytes_per_letter = bytes_per_row * font->Height;
int letter = c - ' ';
const uint8_t *letter_ptr = font->table + bytes_per_letter * letter;
int horz_byte = x / 8;
int horz_bit = 7 - x % 8;
return (*(letter_ptr + y * bytes_per_row + horz_byte) >> horz_bit) & 1;
}
void gfx_putchar(
struct gfx_region *r,
int x,
int y,
char ch,
Color fg,
Color bg
) {
for (int yo = 0; yo < font->Height; yo++) {
for (int xo = 0; xo < font->Width; xo++) {
int lb = letter_bit(font, ch, xo, yo);
if (fg != bg) {
Color c = lb ? fg : bg;
gfx_setpixel(r, x + xo, y + yo, c);
} else {
if (lb) {
gfx_setpixel(r, x + xo, y + yo, fg);
}
}
}
}
}
void gfx_puts(
struct gfx_region *r,
int x,
int y,
const char *str,
Color fg,
Color bg
) {
// if the current position plus the width of the next character
// would bring us outside of the display ...
// ... we move down a line before printing the character
x = 0;
y += font->Height;
}
// now print the character
gfx_putchar(font, r, x, y, *str, fg, bg);
str++;
// move along on the x axis to get the position of the next character
x += font->Width;
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
}
}
Color gfx_color_rgb_f(struct gfx_region *reg, float r, float g, float b)
{
return fb_encode_color_rgb_f(reg->fb, r, g, b);
}
Color gfx_color_rgb(struct gfx_region *reg, uint8_t r, uint8_t g, uint8_t b)
{
return fb_encode_color_rgb(reg->fb, r, g, b);
}
void gfx_update(struct gfx_region *reg)
{
reg->fb->update(reg->fb);
}
void gfx_clear_to_color(struct gfx_region *reg, Color c)
{
fb_clear_to_color(reg->fb, c);
}
void gfx_clear(struct gfx_region *reg)
{
gfx_clear_to_color(reg, gfx_color(reg, BLACK));
}
void gfx_circle(struct gfx_region *reg, int x, int y, int r, int t, Color c)
{
for (int y_ = y - r - t; y_ <= y + r + t; y_++) {
for (int x_ = x - r - t; x_ <= x + r + t; x_++) {
int dx = (x_ - x) * (x_ - x);
int dy = (y_ - y) * (y_ - y);
int edge = ((dx + dy) >= inner) && ((dx + dy) <= outer);
if (edge)
gfx_setpixel(reg, x_, y_, c);
}
}
}
void gfx_circle_fill(struct gfx_region *reg, int x, int y, int r, Color c)
{
for (int y_ = y - r; y_ <= y + r; y_++) {
for (int x_ = x - r; x_ <= x + r; x_++) {
int dx = (x_ - x) * (x_ - x);
int dy = (y_ - y) * (y_ - y);
int fill = (dx + dy) <= edge;
if (fill)
gfx_setpixel(reg, x_, y_, c);
}
}
}
void gfx_rectangle(
struct gfx_region *reg, int x, int y, int w, int h, int t, Color c
) {
gfx_line(reg, x, y, x + w, y, t, c);
gfx_line(reg, x, y + h, x + w, y + h, t, c);
gfx_line(reg, x, y, x, y + h, t, c);
gfx_line(reg, x + w, y, x + w, y + h, t, c);
}
void gfx_rectangle_fill(
struct gfx_region *reg, int x, int y, int w, int h, Color c
) {
for (int y_ = y; y_ <= y + h; y_++) {
for (int x_ = x; x_ <= x + w; x_++)
gfx_setpixel(reg, x_, y_, c);
}
}
/*
* For derivation of the algorithm, see:
* https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
*/
static void plot_line_low(
struct gfx_region *reg, int x0, int y0, int x1, int y1, int t, Color c
) {
int dx = x1 - x0;
int dy = y1 - y0;
int yi = 1;
if (dy < 0) {
yi = -1;
dy = -dy;
}
int d = 2 * dy - dx;
int y = y0;
if (t > 1) {
gfx_circle_fill(reg, x, y, t, c);
} else {
gfx_setpixel(reg, x, y, c);
if (d > 0) {
y += yi;
d -= 2 * dx;
}
d += 2 * dy;
/*
* For derivation of the algorithm, see:
* https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
*/
static void plot_line_high(
struct gfx_region *reg, int x0, int y0, int x1, int y1, int t, Color c
int dx = x1 - x0;
int dy = y1 - y0;
int xi = 1;
if (dx < 0) {
xi = -1;
dx = -dx;
}
int d = 2 * dx - dy;
int x = x0;
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
if (t > 1) {
gfx_circle_fill(reg, x, y, t, c);
} else {
gfx_setpixel(reg, x, y, c);
}
if (d > 0) {
x += xi;
d -= 2 * dy;
}
d += 2 * dx;
}
}
void gfx_line(
struct gfx_region *reg, int x0, int y0, int x1, int y1, int t, Color c
) {
if (abs(y1 - y0) < abs(x1 - x0)) {
if (x0 > x1) {
plot_line_low(reg, x1, y1, x0, y0, t, c);
} else {
plot_line_low(reg, x0, y0, x1, y1, t, c);
}
} else {
if (y0 > y1) {
plot_line_high(reg, x1, y1, x0, y0, t, c);
} else {
plot_line_high(reg, x0, y0, x1, y1, t, c);
}
}
}
Color gfx_color(struct gfx_region *reg, enum gfx_color color)
{
if ((int)(color) >= COLORS)
return 0;
const struct gfx_color_rgb *c = &gfx_colors_rgb[color];
return gfx_color_rgb(reg, c->r, c->g, c->b);
}
static void gfx_copy_region_raw(
struct gfx_region *reg,
int x,
int y,
int w,
int h,
size_t bpp = size / (w * h);
for (int y_ = 0; y_ < h; y_++) {
for (int x_ = 0; x_ < w; x_++) {
Color c;
switch (bpp) {
default:
case 2:
c = *(const uint16_t *)(p);
break;
}
gfx_setpixel(reg, x + x_, y + y_, c);
p += bpp;
}
}
}
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
static void gfx_copy_region_mono(
struct gfx_region *reg,
int x,
int y,
int w,
int h,
size_t size,
const void *p
) {
const char *bp = p;
int bit = 0;
Color white = gfx_color(reg, WHITE);
Color black = gfx_color(reg, BLACK);
for (int y_ = 0; y_ < h; y_++) {
for (int x_ = 0; x_ < w; x_++) {
int value = *bp & (1 << bit);
if (++bit >= 8) {
bp++;
bit %= 8;
if ((const void *)(bp) >= (p + size))
return;
}
Color c = value ? white : black;
gfx_setpixel(reg, x + x_, y + y_, c);
}
}
}
/*
* "Decompress" the image. The algorithm works as follows:
*
* Each byte encodes up to 127 pixels in either white or black. The most
* significant bit determines the color, the remaining 7 bits determine the
* amount.
*/
static void gfx_copy_region_rle_mono(
struct gfx_region *reg,
int x,
int y,
int w,
int h,
size_t size,
const void *p
) {
const char *data = p;
int idx = 0;
Color white = gfx_color(reg, WHITE);
Color black = gfx_color(reg, BLACK);
for (int i = 0; i < size; i++) {
Color color = (data[i] & 0x80) ? white : black;
uint8_t length = data[i] & 0x7f;
for (int j = 0; j < length; j++) {
uint16_t x = idx % w;
uint16_t y = idx / w;
gfx_setpixel(reg, x, y, color);
idx++;
}
}
}
void gfx_copy_region(
struct gfx_region *reg,
int x,
int y,
int w,
int h,
enum gfx_encoding encoding,
size_t size,
const void *p
) {
switch (encoding) {
case GFX_RAW:
gfx_copy_region_raw(reg, x, y, w, h, size, p);
break;
case GFX_MONO:
gfx_copy_region_mono(reg, x, y, w, h, size, p);
break;
case GFX_RLE_MONO:
gfx_copy_region_rle_mono(reg, x, y, w, h, size, p);
break;
default:
break;
}
}
void gfx_copy_raw(struct gfx_region *reg, const void *p, size_t size)
{
fb_copy_raw(reg->fb, p, size);
}