Skip to content
Snippets Groups Projects
card10.c 5.72 KiB
Newer Older
#include "pmic.h"
#include "bosch.h"
#include "display.h"
#include "portexpander.h"

#include "bhy_uc_driver.h"
#include "Bosch_PCB_7183_di03_BMI160_BMM150-7183_di03.2.1.11696_170103.h"
#include "bme680.h"
#include "bma400.h"
#include "bhy.h"
#include "leds.h"

#include "mxc_config.h"
#include "board.h"
#include "pb.h"

#include "tmr_utils.h"
#include "i2c.h"
#include "rtc.h"
#include "spi.h"
#include "gpio.h"

#include <stdio.h>
#include <stdint.h>
#include <string.h>

#define SPI_SPEED (15 * 1000 * 1000) // Bit Rate
const gpio_cfg_t bhi_interrupt_pin = {
	PORT_0, PIN_13, GPIO_FUNC_IN, GPIO_PAD_PULL_UP
};
void card10_init(void)
{
	printf("card10 init...\n");
	//Setup the I2CM
	I2C_Shutdown(MXC_I2C0_BUS0);
	I2C_Init(MXC_I2C0_BUS0, I2C_FAST_MODE, NULL);
	I2C_Shutdown(MXC_I2C1_BUS0);
	I2C_Init(MXC_I2C1_BUS0, I2C_FAST_MODE, NULL);
	pmic_init();
	pmic_set_led(0, 0);
	pmic_set_led(1, 0);
	pmic_set_led(2, 0);

	portexpander_init();
	PB_Init();
	TMR_Delay(MXC_TMR0, MSEC(1000), 0);
	while (RTC_EnableRTCE(MXC_RTC) == E_BUSY)
		;

	// Enable 32 kHz output
	while (RTC_SquareWave(
		       MXC_RTC,
		       SQUARE_WAVE_ENABLED,
		       F_32KHZ,
		       NOISE_IMMUNE_MODE,
		       NULL) == E_BUSY
	)
		;
	/* If we don't have a valid time yet, set it to 2019-01-01 */
	if (RTC_GetSecond() < 1546300800UL) {
		while (RTC_Init(MXC_RTC, 1546300800UL, 0, NULL) == E_BUSY)
			;
	}

	// Enable SPI
	sys_cfg_spi_t spi17y_master_cfg;
	spi17y_master_cfg.map = MAP_A;
	spi17y_master_cfg.ss0 = Enable;
	spi17y_master_cfg.ss1 = Disable;
	spi17y_master_cfg.ss2 = Disable;
	if (SPI_Init(SPI0, 0, SPI_SPEED, spi17y_master_cfg) != 0) {
		printf("Error configuring SPI\n");
		while (1)
			;
	}
	display_init();
	leds_init();
	GPIO_Config(&bhi_interrupt_pin);
}

static uint32_t ecg_read_reg(uint8_t reg)
{
	spi_req_t req;
	uint8_t tx_data[] = { (reg << 1) | 1, 0, 0, 0 };
	uint8_t rx_data[] = { 0, 0, 0, 0 };
	req.tx_data       = tx_data;
	req.rx_data       = rx_data;
	req.len           = 4;
	req.bits          = 8;
	req.width         = SPI17Y_WIDTH_1;
	req.ssel          = 0;
	req.deass         = 1;
	req.ssel_pol      = SPI17Y_POL_LOW;
	req.tx_num        = 0;
	req.rx_num        = 0;

	SPI_MasterTrans(SPI0, &req);

	return (rx_data[1] << 16) | (rx_data[2] << 8) | rx_data[3];
	uint8_t dummy[1] = { 0 };
	// "7-bit addresses 0b0000xxx and 0b1111xxx are reserved"
	for (int addr = 0x8; addr < 0x78; ++addr) {
		// A 0 byte write does not seem to work so always send a single byte.
		int res =
			I2C_MasterWrite(MXC_I2C0_BUS0, addr << 1, dummy, 1, 0);
		if (res == 1) {
			printf("Found (7 bit) address 0x%02x on I2C0\n", addr);
		}

		res = I2C_MasterWrite(MXC_I2C1_BUS0, addr << 1, dummy, 1, 0);
		if (res == 1) {
			printf("Found (7 bit) address 0x%02x on I2C1\n", addr);
		}
	}

	if (bhy_driver_init(bhy1_fw)) {
		printf("Failed to init bhy\n");
	} else {
		/* wait for the bhy trigger the interrupt pin go down and up again */
		while (GPIO_InGet(&bhi_interrupt_pin))
			;
		while (!GPIO_InGet(&bhi_interrupt_pin))
			;

		/* the remapping matrix for BHI and Magmetometer should be configured here to make sure rotation vector is */
		/* calculated in a correct coordinates system. */
		int8_t bhy_mapping_matrix_config[3 * 3] = { 0, -1, 0, 1, 0,
							    0, 0,  0, 1 };
		int8_t mag_mapping_matrix_config[3 * 3] = { -1, 0, 0, 0, 1,
							    0,  0, 0, -1 };
		bhy_mapping_matrix_set(
			PHYSICAL_SENSOR_INDEX_ACC, bhy_mapping_matrix_config
		);
		bhy_mapping_matrix_set(
			PHYSICAL_SENSOR_INDEX_MAG, mag_mapping_matrix_config
		);
		bhy_mapping_matrix_set(
			PHYSICAL_SENSOR_INDEX_GYRO, bhy_mapping_matrix_config
		);

		/* the sic matrix should be calculated for customer platform by logging uncalibrated magnetometer data. */
		/* the sic matrix here is only an example array (identity matrix). Customer should generate their own matrix. */
		/* This affects magnetometer fusion performance. */
		float sic_array[9] = { 1.0, 0.0, 0.0, 0.0, 1.0,
				       0.0, 0.0, 0.0, 1.0 };
		bhy_set_sic_matrix(sic_array);
	}

	struct bme680_dev gas_sensor;
	gas_sensor.dev_id   = BME680_I2C_ADDR_PRIMARY;
	gas_sensor.intf     = BME680_I2C_INTF;
	gas_sensor.read     = card10_bosch_i2c_read;
	gas_sensor.write    = card10_bosch_i2c_write;
	gas_sensor.delay_ms = card10_bosch_delay;
	gas_sensor.amb_temp = 25;

	int8_t rslt = BME680_OK;
	rslt        = bme680_init(&gas_sensor);
	if (rslt != BME680_OK) {
		printf("Failed to init BME680\n");
	}

	struct bma400_dev bma;
	bma.intf_ptr = NULL; /* To attach your interface device reference */
	bma.delay_ms = card10_bosch_delay;
	bma.dev_id   = BMA400_I2C_ADDRESS_SDO_LOW;
	bma.read     = card10_bosch_i2c_read_ex;
	bma.write    = card10_bosch_i2c_write_ex;
	bma.intf     = BMA400_I2C_INTF;

	rslt = bma400_init(&bma);
	if (rslt == BMA400_OK) {
		printf("BMA400 found with chip ID 0x%X\r\n", bma.chip_id);
	}
    for(int i=0; i<0x20; i++) {
        uint32_t val = ecg_read_reg(i);
        printf("ECG: %02x: 0x%06x\n", i, val);
    }
	uint32_t val = ecg_read_reg(0xf);
	printf("ECG: %02x: 0x%06lx (should be 0x5139a0)\n", 0xf, val);
q3k's avatar
q3k committed
void core1_start(void *isr)
q3k's avatar
q3k committed
	MXC_GCR->gp0 = (uint32_t)isr;
	MXC_GCR->perckcn1 &= ~MXC_F_GCR_PERCKCN1_CPU1;
void core1_stop(void)
{
	MXC_GCR->perckcn1 |= MXC_F_GCR_PERCKCN1_CPU1;
	pmic_poll();
void card10_reset(void)
{
	printf("Resetting ...\n");
	/*
        * Give the UART fifo time to clear.
        * TODO: Do this properly
        */
	for (int i = 0; i < 0x1000000; i++) {
		__asm volatile("nop");
	}
	MXC_GCR->rstr0 = MXC_F_GCR_RSTR0_SYSTEM;
}

void GPIO0_IRQHandler(void)
{
	GPIO_Handler(PORT_0);
}

void GPIO1_IRQHandler(void)
{
	GPIO_Handler(PORT_1);
}

void GPIO2_IRQHandler(void)
{
	GPIO_Handler(PORT_2);
}

void GPIO3_IRQHandler(void)
{
	GPIO_Handler(PORT_3);