Skip to content
Snippets Groups Projects
Select Git revision
  • 14606dabd64e44f11f9ae6f8640a4165b84c15cd
  • master default protected
  • fix-warnings
  • tvbgone-fixes
  • genofire/ble-follow-py
  • schneider/ble-stability-new-phy-adv
  • schneider/ble-stability
  • msgctl/gfx_rle
  • schneider/ble-stability-new-phy
  • add_menu_vibration
  • plaetzchen/ios-workaround
  • blinkisync-as-preload
  • schneider/max30001-pycardium
  • schneider/max30001-epicaridum
  • schneider/max30001
  • schneider/stream-locks
  • schneider/fundamental-test
  • schneider/ble-buffers
  • schneider/maxim-sdk-update
  • ch3/splashscreen
  • koalo/bhi160-works-but-dirty
  • v1.11
  • v1.10
  • v1.9
  • v1.8
  • v1.7
  • v1.6
  • v1.5
  • v1.4
  • v1.3
  • v1.2
  • v1.1
  • v1.0
  • release-1
  • bootloader-v1
  • v0.0
36 results

shell.nix

Blame
  • Forked from card10 / firmware
    Source project has a limited visibility.
    esppwm.c 13.94 KiB
    /******************************************************************************
     * Copyright 2013-2014 Espressif Systems (Wuxi)
     *
     * FileName: pwm.c
     *
     * Description: pwm driver
     *
     * Modification history:
     *     2014/5/1, v1.0 create this file.
     *     2016/3/2: Modifications by dpgeorge to suit MicroPython
    *******************************************************************************/
    #include <stdio.h>
    #include <string.h>
    
    #include "etshal.h"
    #include "os_type.h"
    #include "gpio.h"
    
    #include "esppwm.h"
    
    #include "py/mpprint.h"
    #define PWM_DBG(...)
    //#define PWM_DBG(...) mp_printf(&mp_plat_print, __VA_ARGS__)
    
    #define ICACHE_RAM_ATTR // __attribute__((section(".text")))
    
    #define PWM_CHANNEL 8
    #define PWM_DEPTH 1023
    #define PWM_FREQ_MAX 1000
    #define PWM_1S 1000000
    
    struct pwm_single_param {
        uint16_t gpio_set;
        uint16_t gpio_clear;
        uint32_t h_time;
    };
    
    struct pwm_param {
        uint32_t period;
        uint16_t freq;
        uint16_t duty[PWM_CHANNEL];
    };
    
    STATIC const uint8_t pin_num[PWM_CHANNEL] = {0, 2, 4, 5, 12, 13, 14, 15};
    
    STATIC struct pwm_single_param pwm_single_toggle[2][PWM_CHANNEL + 1];
    STATIC struct pwm_single_param *pwm_single;
    
    STATIC struct pwm_param pwm;
    
    STATIC int8_t pwm_out_io_num[PWM_CHANNEL] = {-1, -1, -1, -1, -1, -1, -1, -1};
    
    STATIC uint8_t pwm_channel_toggle[2];
    STATIC uint8_t *pwm_channel;
    STATIC uint8_t pwm_toggle = 1;
    STATIC uint8_t pwm_timer_down = 1;
    STATIC uint8_t pwm_current_channel = 0;
    STATIC uint16_t pwm_gpio = 0;
    STATIC uint8_t pwm_channel_num = 0;
    
    //XXX: 0xffffffff/(80000000/16)=35A
    #define US_TO_RTC_TIMER_TICKS(t)          \
        ((t) ?                                   \
         (((t) > 0x35A) ?                   \
          (((t)>>2) * ((APB_CLK_FREQ>>4)/250000) + ((t)&0x3) * ((APB_CLK_FREQ>>4)/1000000))  :    \
          (((t) *(APB_CLK_FREQ>>4)) / 1000000)) :    \
         0)
    
    //FRC1
    #define FRC1_ENABLE_TIMER  BIT7
    
    typedef enum {
        DIVDED_BY_1 = 0,
        DIVDED_BY_16 = 4,
        DIVDED_BY_256 = 8,
    } TIMER_PREDIVED_MODE;
    
    typedef enum {
        TM_LEVEL_INT = 1,
        TM_EDGE_INT   = 0,
    } TIMER_INT_MODE;
    
    STATIC void ICACHE_FLASH_ATTR
    pwm_insert_sort(struct pwm_single_param pwm[], uint8 n)
    {
        uint8 i;
    
        for (i = 1; i < n; i++) {
            if (pwm[i].h_time < pwm[i - 1].h_time) {
                int8 j = i - 1;
                struct pwm_single_param tmp;
    
                memcpy(&tmp, &pwm[i], sizeof(struct pwm_single_param));
                memcpy(&pwm[i], &pwm[i - 1], sizeof(struct pwm_single_param));
    
                while (tmp.h_time < pwm[j].h_time) {
                    memcpy(&pwm[j + 1], &pwm[j], sizeof(struct pwm_single_param));
                    j--;
                    if (j < 0) {
                        break;
                    }
                }
    
                memcpy(&pwm[j + 1], &tmp, sizeof(struct pwm_single_param));
            }
        }
    }
    
    STATIC volatile uint8 critical = 0;
    
    #define LOCK_PWM(c)  do {                       \
        while( (c)==1 );                            \
        (c) = 1;                                    \
    } while (0)
    
    #define UNLOCK_PWM(c) do {                      \
        (c) = 0;                                    \
    } while (0)
    
    void ICACHE_FLASH_ATTR
    pwm_start(void)
    {
        uint8 i, j;
        PWM_DBG("--Function pwm_start() is called\n");
        PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
        PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
        PWM_DBG("pwm.period:%d,pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.period,pwm.duty[0],pwm.duty[1],pwm.duty[2]);
    
        LOCK_PWM(critical);   // enter critical
    
        struct pwm_single_param *local_single = pwm_single_toggle[pwm_toggle ^ 0x01];
        uint8 *local_channel = &pwm_channel_toggle[pwm_toggle ^ 0x01];
    
        // step 1: init PWM_CHANNEL+1 channels param
        for (i = 0; i < pwm_channel_num; i++) {
            uint32 us = pwm.period * pwm.duty[i] / PWM_DEPTH;
            local_single[i].h_time = US_TO_RTC_TIMER_TICKS(us);
            PWM_DBG("i:%d us:%d ht:%d\n",i,us,local_single[i].h_time);
            local_single[i].gpio_set = 0;
            local_single[i].gpio_clear = 1 << pin_num[pwm_out_io_num[i]];
        }
    
        local_single[pwm_channel_num].h_time = US_TO_RTC_TIMER_TICKS(pwm.period);
        local_single[pwm_channel_num].gpio_set = pwm_gpio;
        local_single[pwm_channel_num].gpio_clear = 0;
        PWM_DBG("i:%d period:%d ht:%d\n",pwm_channel_num,pwm.period,local_single[pwm_channel_num].h_time);
        // step 2: sort, small to big
        pwm_insert_sort(local_single, pwm_channel_num + 1);
    
        *local_channel = pwm_channel_num + 1;
        PWM_DBG("1channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
        // step 3: combine same duty channels
        for (i = pwm_channel_num; i > 0; i--) {
            if (local_single[i].h_time == local_single[i - 1].h_time) {
                local_single[i - 1].gpio_set |= local_single[i].gpio_set;
                local_single[i - 1].gpio_clear |= local_single[i].gpio_clear;
    
                for (j = i + 1; j < *local_channel; j++) {
                    memcpy(&local_single[j - 1], &local_single[j], sizeof(struct pwm_single_param));
                }
    
                (*local_channel)--;
            }
        }
        PWM_DBG("2channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
        // step 4: cacl delt time
        for (i = *local_channel - 1; i > 0; i--) {
            local_single[i].h_time -= local_single[i - 1].h_time;
        }
    
        // step 5: last channel needs to clean
        local_single[*local_channel-1].gpio_clear = 0;
    
        // step 6: if first channel duty is 0, remove it
        if (local_single[0].h_time == 0) {
            local_single[*local_channel - 1].gpio_set &= ~local_single[0].gpio_clear;
            local_single[*local_channel - 1].gpio_clear |= local_single[0].gpio_clear;
    
            for (i = 1; i < *local_channel; i++) {
                memcpy(&local_single[i - 1], &local_single[i], sizeof(struct pwm_single_param));
            }
    
            (*local_channel)--;
        }
    
        // if timer is down, need to set gpio and start timer
        if (pwm_timer_down == 1) {
            pwm_channel = local_channel;
            pwm_single = local_single;
            // start
            gpio_output_set(local_single[0].gpio_set, local_single[0].gpio_clear, pwm_gpio, 0);
    
            // yeah, if all channels' duty is 0 or 255, don't need to start timer, otherwise start...
            if (*local_channel != 1) {
                pwm_timer_down = 0;
                RTC_REG_WRITE(FRC1_LOAD_ADDRESS, local_single[0].h_time);
            }
        }
    
        if (pwm_toggle == 1) {
            pwm_toggle = 0;
        } else {
            pwm_toggle = 1;
        }
    
        UNLOCK_PWM(critical);   // leave critical
        PWM_DBG("3channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
    }
    
    /******************************************************************************
     * FunctionName : pwm_set_duty
     * Description  : set each channel's duty params
     * Parameters   : uint8 duty    : 0 ~ PWM_DEPTH
     *                uint8 channel : channel index
     * Returns      : NONE
    *******************************************************************************/
    void ICACHE_FLASH_ATTR
    pwm_set_duty(uint16 duty, uint8 channel)
    {
        uint8 i;
        for(i=0;i<pwm_channel_num;i++){
            if(pwm_out_io_num[i] == channel){
                channel = i;
                break;
            }
        }
        if(i==pwm_channel_num)      // non found
            return;
    
        LOCK_PWM(critical);   // enter critical
        if (duty < 1) {
            pwm.duty[channel] = 0;
        } else if (duty >= PWM_DEPTH) {
            pwm.duty[channel] = PWM_DEPTH;
        } else {
            pwm.duty[channel] = duty;
        }
        UNLOCK_PWM(critical);   // leave critical
    }
    
    /******************************************************************************
     * FunctionName : pwm_set_freq
     * Description  : set pwm frequency
     * Parameters   : uint16 freq : 100hz typically
     * Returns      : NONE
    *******************************************************************************/
    void ICACHE_FLASH_ATTR
    pwm_set_freq(uint16 freq, uint8 channel)
    {
        LOCK_PWM(critical);   // enter critical
        if (freq > PWM_FREQ_MAX) {
            pwm.freq = PWM_FREQ_MAX;
        } else if (freq < 1) {
            pwm.freq = 1;
        } else {
            pwm.freq = freq;
        }
    
        pwm.period = PWM_1S / pwm.freq;
        UNLOCK_PWM(critical);   // leave critical
    }
    
    /******************************************************************************
     * FunctionName : pwm_get_duty
     * Description  : get duty of each channel
     * Parameters   : uint8 channel : channel index
     * Returns      : NONE
    *******************************************************************************/
    uint16 ICACHE_FLASH_ATTR
    pwm_get_duty(uint8 channel)
    {
        uint8 i;
        for(i=0;i<pwm_channel_num;i++){
            if(pwm_out_io_num[i] == channel){
                channel = i;
                break;
            }
        }
        if(i==pwm_channel_num)      // non found
            return 0;
    
        return pwm.duty[channel];
    }
    
    /******************************************************************************
     * FunctionName : pwm_get_freq
     * Description  : get pwm frequency
     * Parameters   : NONE
     * Returns      : uint16 : pwm frequency
    *******************************************************************************/
    uint16 ICACHE_FLASH_ATTR
    pwm_get_freq(uint8 channel)
    {
        return pwm.freq;
    }
    
    /******************************************************************************
     * FunctionName : pwm_period_timer
     * Description  : pwm period timer function, output high level,
     *                start each channel's high level timer
     * Parameters   : NONE
     * Returns      : NONE
    *******************************************************************************/
    STATIC void ICACHE_RAM_ATTR
    pwm_tim1_intr_handler(void *dummy)
    {
        (void)dummy;
        uint8 local_toggle = pwm_toggle;                        // pwm_toggle may change outside
        RTC_CLR_REG_MASK(FRC1_INT_ADDRESS, FRC1_INT_CLR_MASK);
    
        if (pwm_current_channel >= (*pwm_channel - 1)) {        // *pwm_channel may change outside
            pwm_single = pwm_single_toggle[local_toggle];
            pwm_channel = &pwm_channel_toggle[local_toggle];
    
            gpio_output_set(pwm_single[*pwm_channel - 1].gpio_set,
                            pwm_single[*pwm_channel - 1].gpio_clear,
                            pwm_gpio,
                            0);
    
            pwm_current_channel = 0;
    
            if (*pwm_channel != 1) {
                RTC_REG_WRITE(FRC1_LOAD_ADDRESS, pwm_single[pwm_current_channel].h_time);
            } else {
                pwm_timer_down = 1;
            }
        } else {
            gpio_output_set(pwm_single[pwm_current_channel].gpio_set,
                            pwm_single[pwm_current_channel].gpio_clear,
                            pwm_gpio, 0);
    
            pwm_current_channel++;
            RTC_REG_WRITE(FRC1_LOAD_ADDRESS, pwm_single[pwm_current_channel].h_time);
        }
    }
    
    /******************************************************************************
     * FunctionName : pwm_init
     * Description  : pwm gpio, params and timer initialization
     * Parameters   : uint16 freq : pwm freq param
     *                uint16 *duty : each channel's duty
     * Returns      : NONE
    *******************************************************************************/
    void ICACHE_FLASH_ATTR
    pwm_init(void)
    {
        uint8 i;
    
        RTC_REG_WRITE(FRC1_CTRL_ADDRESS,  //FRC2_AUTO_RELOAD|
                      DIVDED_BY_16
                      | FRC1_ENABLE_TIMER
                      | TM_EDGE_INT);
        RTC_REG_WRITE(FRC1_LOAD_ADDRESS, 0);
    
        for (i = 0; i < PWM_CHANNEL; i++) {
            pwm_gpio = 0;
            pwm.duty[i] = 0;
        }
    
        pwm_set_freq(500, 0);
        pwm_start();
    
        ETS_FRC_TIMER1_INTR_ATTACH(pwm_tim1_intr_handler, NULL);
        TM1_EDGE_INT_ENABLE();
        ETS_FRC1_INTR_ENABLE();
    }
    
    int ICACHE_FLASH_ATTR
    pwm_add(uint8_t pin_id, uint32_t pin_mux, uint32_t pin_func){
        PWM_DBG("--Function pwm_add() is called. channel:%d\n", channel);
        PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
        PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
        PWM_DBG("pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.duty[0],pwm.duty[1],pwm.duty[2]);
        int channel = -1;
        for (int i = 0; i < PWM_CHANNEL; ++i) {
            if (pin_num[i] == pin_id) {
                channel = i;
                break;
            }
        }
        if (channel == -1) {
            return -1;
        }
        uint8 i;
        for(i=0;i<PWM_CHANNEL;i++){
            if(pwm_out_io_num[i]==channel)  // already exist
                return channel;
            if(pwm_out_io_num[i] == -1){ // empty exist
                LOCK_PWM(critical);   // enter critical
                pwm_out_io_num[i] = channel;
                pwm.duty[i] = 0;
                pwm_gpio |= (1 << pin_num[channel]);
                PIN_FUNC_SELECT(pin_mux, pin_func);
                GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[channel])), GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[channel]))) & (~ GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE))); //disable open drain;
                pwm_channel_num++;
                UNLOCK_PWM(critical);   // leave critical
                return channel;
            }
        }
        return -1;
    }
    
    bool ICACHE_FLASH_ATTR
    pwm_delete(uint8 channel){
        PWM_DBG("--Function pwm_delete() is called. channel:%d\n", channel);
        PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
        PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
        PWM_DBG("pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.duty[0],pwm.duty[1],pwm.duty[2]);
        uint8 i,j;
        for(i=0;i<pwm_channel_num;i++){
            if(pwm_out_io_num[i]==channel){  // exist
                LOCK_PWM(critical);   // enter critical
                pwm_out_io_num[i] = -1;
                pwm_gpio &= ~(1 << pin_num[channel]);   //clear the bit
                for(j=i;j<pwm_channel_num-1;j++){
                    pwm_out_io_num[j] = pwm_out_io_num[j+1];
                    pwm.duty[j] = pwm.duty[j+1];
                }
                pwm_out_io_num[pwm_channel_num-1] = -1;
                pwm.duty[pwm_channel_num-1] = 0;
                pwm_channel_num--;
                UNLOCK_PWM(critical);   // leave critical
                return true;
            }
        }
        // non found
        return true;
    }