Skip to content
Snippets Groups Projects
Commit 8db3c3ac authored by schneider's avatar schneider
Browse files

feat(bsec): Initial BSEC API

parent fb151be2
No related branches found
No related tags found
No related merge requests found
......@@ -128,6 +128,7 @@ typedef _Bool bool;
#define API_BME680_INIT 0xD0
#define API_BME680_DEINIT 0xD1
#define API_BME680_GET_DATA 0xD2
#define API_BSEC_GET_DATA 0xD3
#define API_BHI160_ENABLE 0xe0
#define API_BHI160_DISABLE 0xe1
......@@ -918,6 +919,122 @@ API(API_BME680_GET_DATA, int epic_bme680_read_sensors(
struct bme680_sensor_data *data
));
/**
* BME680 Sensor Data
*/
struct bsec_sensor_data {
/** Compensated temperature in degree celsius */
float temperature;
/** Compensated humidity in % relative humidity */
float humidity;
/** Pressure in hPa */
float pressure;
/** Gas resistance in Ohms */
float gas_resistance;
/** Timestamp in of the measurement in UNIX time (seconds since
* 1970-01-01 00:00:00 UTC)*/
uint32_t timestamp;
/** Accuracy of IAQ, CO2 equivalent and breath VOC equivalent:
* 0: Stabilization / run-in ongoing:
* This means that the sensor still needs to warm up. Takes about
* 5 min after activation of BSEC / reboot.
*
* 1: Low accuracy:
* The sensor has not yet been calibrated. BSEC needs to collect
* more data to calibrate the sensor. This can take multiple
* hours.
*
* BSEC documentation: To reach high accuracy(3) please expose
* sensor once to good air (e.g. outdoor air) and bad air (e.g.
* box with exhaled breath) for auto-trimming
*
* 2: Medium accuracy: auto-trimming ongoing
* BSEC has detected that it needs to recalibrate the sensor.
* This is an automatic process and usally finishes after tens
* of minutes. Can happen every now and then.
*
* 3: High accuracy:
* The sensor has warmed up and is calibrated.
*
* From BSEC documentation:
* IAQ accuracy indicator will notify the user when they should
* initiate a calibration process. Calibration is performed automatically
* in the background if the sensor is exposed to clean and polluted air
* for approximately 30 minutes each.
*
* See also:
* https://community.bosch-sensortec.com/t5/MEMS-sensors-forum/BME680-IAQ-accuracy-definition/m-p/5931/highlight/true#M10
*/
uint8_t accuracy;
/** Indoor Air Quality with range 0 to 500
*
* Statement from the Bosch BSEC library:
*
* Indoor-air-quality (IAQ) gives an indication of the relative change
* in ambient TVOCs detected by BME680.
*
* The IAQ scale ranges from 0 (clean air) to 500 (heavily polluted air).
* During operation, algorithms automatically calibrate and adapt
* themselves to the typical environments where the sensor is operated
* (e.g., home, workplace, inside a car, etc.).This automatic background
* calibration ensures that users experience consistent IAQ performance.
* The calibration process considers the recent measurement history (typ.
* up to four days) to ensure that IAQ=25 corresponds to typical good air
* and IAQ=250 indicates typical polluted air.
*
* Please also consult the BME680 datsheet (pages 9 and 21) as well:
* https://git.card10.badge.events.ccc.de/card10/hardware/-/blob/master/datasheets/bosch/BST-BME680-DS001.pdf
*
*/
int32_t indoor_air_quality;
/** Unscaled IAQ value.
*
* See this post for details:
* https://community.bosch-sensortec.com/t5/MEMS-sensors-forum/BME680-strange-IAQ-and-CO2-values/m-p/9667/highlight/true#M1505
*/
int32_t static_indoor_air_quality;
/** Estimation of equivalant CO2 content in the air in ppm. */
float co2_equivalent;
/** Estimation of equivalant brath VOC content in the air in ppm. */
float breath_voc_equivalent;
};
/**
* Get the current BME680 data filtered by Bosch BSEC library
*
* The Bosch BSEC libary allows to compute an indoor air
* qualtiy (IAQ)metric as well as CO2 and VOC content
* equivalents using the gas sensor of the BME680.
*
* The sample rate is currently fixed to one sample every 3 seconds.
* Querying the sensor more often will return cached data.
*
* After the libary has been activated it starts to calibrate the
* sensor. This can take multiple hours.
* After a reset/power on it takes about 5 minutes to stabilize
* the sensor if it was calibrated before.
*
* The BSEC library regularly recalibrates the sensor during operation.
* The ``accuracy`` field of the return data indicates the calibration
* status of the sensor. Please take it into consideration when
* using / displaying the IAQ.
*
* Please refer to the description of ``bsec_sensor_data`` for more
* information about how to interpret its content.
*
* .. versionadded:: 1.
*
* :param data: Where to store the environmental data.
* :return: 0 on success or ``-Exxx`` on error. The following
* errors might occur:
*
* - ``-EFAULT``: On NULL-pointer.
* - ``-EINVAL``: No data available from the sensor.
* - ``-ENODEV``: BSEC libray is not running.
*/
API(API_BSEC_GET_DATA, int epic_bsec_read_sensors(
struct bsec_sensor_data *data
));
/**
* MAX86150
* ======
......
......@@ -132,6 +132,23 @@ void output_ready(
(unsigned int)(breath_voc_equivalent * 1e3));
}
int epic_bsec_read_sensors(struct bsec_sensor_data *data)
{
if(data == NULL) {
return -EFAULT;
}
if(!bsec_task_active) {
return -ENODEV;
}
/* TODO: could also return -EINVAL */
while (last_bme680_timestamp == 0)
vTaskDelay(pdMS_TO_TICKS(10));
*data = last_bsec_data;
return 0;
}
static uint32_t bsec_load(char *path, uint8_t *buffer, uint32_t n_buffer)
{
uint32_t len = 0;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment