Skip to content
Snippets Groups Projects
Select Git revision
  • 017ef3f9a498f14ae7f6e33e9fe6d35b7f8dabf1
  • master default protected
  • blink_multi_rocket
  • blink_rocket
  • msgctl/gfx_rle
  • msgctl/faultscreen
  • msgctl/textbuffer_api
  • schneider/bonding
  • schneider/bootloader-update-9a0d158
  • schneider/bsec
  • rahix/bma
  • rahix/bhi
  • schleicher-test
  • schneider/schleicher-test
  • freertos-btle
  • ch3/api-speed-eval2
  • schneider/mp-for-old-bl
  • ch3/leds-api
  • ch3/genapi-refactor
  • ch3/dual-core
  • dualcore
  • v0.0
22 results

l0der.h

Blame
  • Forked from card10 / firmware
    Source project has a limited visibility.
    modtime.c 11.53 KiB
    /*
     * This file is part of the Micro Python project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2013, 2014 Damien P. George
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include <stdio.h>
    #include <string.h>
    #include "stm32f4xx_hal.h"
    
    #include "mpconfig.h"
    #include "nlr.h"
    #include "misc.h"
    #include "qstr.h"
    #include "obj.h"
    #include "portmodules.h"
    #include "rtc.h"
    
    #define DAYS_PER_400Y (365*400 + 97)
    #define DAYS_PER_100Y (365*100 + 24)
    #define DAYS_PER_4Y   (365*4   + 1)
    
    typedef struct {
        uint16_t    tm_year;    // i.e. 2014
        uint8_t     tm_mon;     // 1..12
        uint8_t     tm_mday;    // 1..31
        uint8_t     tm_hour;    // 0..23
        uint8_t     tm_min;     // 0..59
        uint8_t     tm_sec;     // 0..59
        uint8_t     tm_wday;    // 0..6  0 = Monday
        uint16_t    tm_yday;    // 1..366
    } mod_struct_time;
    
    /// \module time - time related functions
    ///
    /// The `time` module provides functions for getting the current time and date,
    /// and for sleeping.
    
    STATIC const uint16_t days_since_jan1[]= { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 };
    
    STATIC bool is_leap_year(mp_uint_t year) {
        return (year % 4 == 0 && year % 100 != 0) || year % 400 == 0;
    }
    
    // Month is one based
    STATIC mp_uint_t days_in_month(mp_uint_t year, mp_uint_t month) {
        mp_uint_t mdays = days_since_jan1[month] - days_since_jan1[month - 1];
        if (month == 2 && is_leap_year(year)) {
            mdays++;
        }
        return mdays;
    }
    
    // compute the day of the year, between 1 and 366
    // month should be between 1 and 12, date should start at 1
    mp_uint_t mod_time_year_day(mp_uint_t year, mp_uint_t month, mp_uint_t date) {
        mp_uint_t yday = days_since_jan1[month - 1] + date;
        if (month >= 3 && is_leap_year(year)) {
            yday += 1;
        }
        return yday;
    }
    
    // returns the number of seconds, as an integer, since 2000-01-01
    mp_uint_t mod_time_seconds_since_2000(mp_uint_t year, mp_uint_t month, mp_uint_t date, mp_uint_t hour, mp_uint_t minute, mp_uint_t second) {
        return
            second
            + minute * 60
            + hour * 3600
            + (mod_time_year_day(year, month, date) - 1
                + ((year - 2000 + 3) / 4) // add a day each 4 years starting with 2001
                - ((year - 2000 + 99) / 100) // subtract a day each 100 years starting with 2001
                + ((year - 2000 + 399) / 400) // add a day each 400 years starting with 2001
                ) * 86400
            + (year - 2000) * 31536000;
    }
    
    // LEAPOCH corresponds to 2000-03-01, which is a mod-400 year, immediately
    // after Feb 29. We calculate seconds as a signed integer relative to that.
    //
    // Our timebase is is relative to 2000-01-01.
    
    #define LEAPOCH ((31 + 29) * 86400)
    
    void mod_time_seconds_since_2000_to_struct_time(mp_uint_t t, mod_struct_time *tm) {
        memset(tm, 0, sizeof(*tm));
    
        // The following algorithm was adapted from musl's __secs_to_tm and adapted
        // for differences in MicroPython's timebase.
    
        mp_int_t seconds = t - LEAPOCH;
    
        mp_int_t days = seconds / 86400;
        seconds %= 86400;
        tm->tm_hour = seconds / 3600;
        tm->tm_min = seconds / 60 % 60;
        tm->tm_sec = seconds % 60;
    
        mp_int_t wday = (days + 2) % 7;   // Mar 1, 2000 was a Wednesday (2)
        if (wday < 0) {
            wday += 7;
        }
        tm->tm_wday = wday;
    
        mp_int_t qc_cycles = days / DAYS_PER_400Y;
        days %= DAYS_PER_400Y;
        if (days < 0) {
            days += DAYS_PER_400Y;
            qc_cycles--;
        }
        mp_int_t c_cycles = days / DAYS_PER_100Y;
        if (c_cycles == 4) {
            c_cycles--;
        }
        days -= (c_cycles * DAYS_PER_100Y);
    
        mp_int_t q_cycles = days / DAYS_PER_4Y;
        if (q_cycles == 25) {
            q_cycles--;
        }
        days -= q_cycles * DAYS_PER_4Y;
    
        mp_int_t years = days / 365;
        if (years == 4) {
            years--;
        }
        days -= (years * 365);
    
        mp_int_t leap = !years && (q_cycles || !c_cycles);
    
        tm->tm_yday = days + 31 + 28 + leap;
        if (tm->tm_yday >= 365 + leap) {
            tm->tm_yday -= 365 + leap;
        }
    
        tm->tm_year = 2000 + years + 4 * q_cycles + 100 * c_cycles + 400 * qc_cycles;
    
        // Note: days_in_month[0] corresponds to March
        static const int8_t  days_in_month[] = {31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29};
    
        mp_int_t month;
        for (month = 0; days_in_month[month] <= days; month++) {
            days -= days_in_month[month];
        }
    
        tm->tm_mon = month + 2;
        if (tm->tm_mon >= 12) {
            tm->tm_mon -= 12;
            tm->tm_year++;
        }
        tm->tm_mday = days + 1; // Make one based
        tm->tm_mon++;   // Make one based
        tm->tm_yday++;  // Make one based
    }
    
    
    /// \function localtime([secs])
    /// Convert a time expressed in seconds since Jan 1, 2000 into an 8-tuple which
    /// contains: (year, month, mday, hour, minute, second, weekday, yearday)
    /// If secs is not provided or None, then the current time from the RTC is used.
    /// year includes the century (for example 2014)
    /// month   is 1-12
    /// mday    is 1-31
    /// hour    is 0-23
    /// minute  is 0-59
    /// second  is 0-59
    /// weekday is 0-6 for Mon-Sun.
    /// yearday is 1-366
    STATIC mp_obj_t time_localtime(uint n_args, const mp_obj_t *args) {
        if (n_args == 0 || args[0] == mp_const_none) {
            // get current date and time
            // note: need to call get time then get date to correctly access the registers
            RTC_DateTypeDef date;
            RTC_TimeTypeDef time;
            HAL_RTC_GetTime(&RTCHandle, &time, FORMAT_BIN);
            HAL_RTC_GetDate(&RTCHandle, &date, FORMAT_BIN);
            mp_obj_t tuple[8] = {
                mp_obj_new_int(2000 + date.Year),
                mp_obj_new_int(date.Month),
                mp_obj_new_int(date.Date),
                mp_obj_new_int(time.Hours),
                mp_obj_new_int(time.Minutes),
                mp_obj_new_int(time.Seconds),
                mp_obj_new_int(date.WeekDay - 1),
                mp_obj_new_int(mod_time_year_day(2000 + date.Year, date.Month, date.Date)),
            };
            return mp_obj_new_tuple(8, tuple);
        }
    
        mp_int_t seconds = mp_obj_get_int(args[0]);
        mod_struct_time tm;
        mod_time_seconds_since_2000_to_struct_time(seconds, &tm);
        mp_obj_t tuple[8] = {
            mp_obj_new_int(tm.tm_year),
            mp_obj_new_int(tm.tm_mon),
            mp_obj_new_int(tm.tm_mday),
            mp_obj_new_int(tm.tm_hour),
            mp_obj_new_int(tm.tm_min),
            mp_obj_new_int(tm.tm_sec),
            mp_obj_new_int(tm.tm_wday),
            mp_obj_new_int(tm.tm_yday),
        };
        return mp_obj_new_tuple(8, tuple);
    }
    MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(time_localtime_obj, 0, 1, time_localtime);
    
    
    /// \function mktime()
    /// This is inverse function of localtime. It's argument is a full 8-tuple
    /// which expresses a time as per localtime. It returns an integer which is
    /// the number of seconds since Jan 1, 2000.
    STATIC mp_obj_t time_mktime(mp_obj_t tuple) {
    
        uint len;
        mp_obj_t *elem;
    
        mp_obj_get_array(tuple, &len, &elem);
    
        // localtime generates a tuple of len 8. CPython uses 9, so we accept both.
        if (len < 8 || len > 9) {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "mktime needs a tuple of length 8 or 9 (%d given)", len));
        }
    
        mp_int_t year    = mp_obj_get_int(elem[0]);
        mp_int_t month   = mp_obj_get_int(elem[1]);
        mp_int_t mday    = mp_obj_get_int(elem[2]);
        mp_int_t hours   = mp_obj_get_int(elem[3]);
        mp_int_t minutes = mp_obj_get_int(elem[4]);
        mp_int_t seconds = mp_obj_get_int(elem[5]);
    
        // Normalize the tuple. This allows things like:
        //
        // tm_tomorrow = list(time.localtime())
        // tm_tomorrow[2] += 1 # Adds 1 to mday
        // tomorrow = time.mktime(tm_tommorrow)
        // 
        // And not have to worry about all the weird overflows.
        //
        // You can subtract dates/times this way as well.
    
        minutes += seconds / 60;
        if ((seconds = seconds % 60) < 0) {
            seconds += 60;
            minutes--;
        }
    
        hours += minutes / 60;
        if ((minutes = minutes % 60) < 0) {
            minutes += 60;
            hours--;
        }
    
        mday += hours / 24;
        if ((hours = hours % 24) < 0) {
            hours += 24;
            mday--;
        }
    
        month--; // make month zero based
        year += month / 12;
        if ((month = month % 12) < 0) {
            month += 12;
            year--;
        }
        month++; // back to one based
    
        while (mday < 1) {
            if (--month == 0) {
                month = 12;
                year--;
            }
            mday += days_in_month(year, month);
        }
        while (mday > days_in_month(year, month)) {
            mday -= days_in_month(year, month);
            if (++month == 13) {
                month = 1;
                year++;
            }
        }
        return mp_obj_new_int_from_uint(mod_time_seconds_since_2000(year, month, mday, hours, minutes, seconds));
    }
    MP_DEFINE_CONST_FUN_OBJ_1(time_mktime_obj, time_mktime);
    
    
    /// \function sleep(seconds)
    /// Sleep for the given number of seconds.  Seconds can be a floating-point number to
    /// sleep for a fractional number of seconds.
    STATIC mp_obj_t time_sleep(mp_obj_t seconds_o) {
    #if MICROPY_PY_BUILTINS_FLOAT
        if (MP_OBJ_IS_INT(seconds_o)) {
    #endif
            HAL_Delay(1000 * mp_obj_get_int(seconds_o));
    #if MICROPY_PY_BUILTINS_FLOAT
        } else {
            HAL_Delay((uint32_t)(1000 * mp_obj_get_float(seconds_o)));
        }
    #endif
        return mp_const_none;
    }
    MP_DEFINE_CONST_FUN_OBJ_1(time_sleep_obj, time_sleep);
    
    /// \function time()
    /// Returns the number of seconds, as an integer, since 1/1/2000.
    STATIC mp_obj_t time_time(void) {
        // get date and time
        // note: need to call get time then get date to correctly access the registers
        RTC_DateTypeDef date;
        RTC_TimeTypeDef time;
        HAL_RTC_GetTime(&RTCHandle, &time, FORMAT_BIN);
        HAL_RTC_GetDate(&RTCHandle, &date, FORMAT_BIN);
        return mp_obj_new_int(mod_time_seconds_since_2000(2000 + date.Year, date.Month, date.Date, time.Hours, time.Minutes, time.Seconds));
    }
    MP_DEFINE_CONST_FUN_OBJ_0(time_time_obj, time_time);
    
    STATIC const mp_map_elem_t time_module_globals_table[] = {
        { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_time) },
    
        { MP_OBJ_NEW_QSTR(MP_QSTR_localtime), (mp_obj_t)&time_localtime_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_mktime), (mp_obj_t)&time_mktime_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_sleep), (mp_obj_t)&time_sleep_obj },
        { MP_OBJ_NEW_QSTR(MP_QSTR_time), (mp_obj_t)&time_time_obj },
    };
    
    STATIC const mp_obj_dict_t time_module_globals = {
        .base = {&mp_type_dict},
        .map = {
            .all_keys_are_qstrs = 1,
            .table_is_fixed_array = 1,
            .used = MP_ARRAY_SIZE(time_module_globals_table),
            .alloc = MP_ARRAY_SIZE(time_module_globals_table),
            .table = (mp_map_elem_t*)time_module_globals_table,
        },
    };
    
    const mp_obj_module_t time_module = {
        .base = { &mp_type_module },
        .name = MP_QSTR_time,
        .globals = (mp_obj_dict_t*)&time_module_globals,
    };