Skip to content
Snippets Groups Projects
Select Git revision
  • 0d8be9c38bcb79376cde682af9b55d94c6806b91
  • master default protected
  • blink_multi_rocket
  • blink_rocket
  • msgctl/gfx_rle
  • msgctl/faultscreen
  • msgctl/textbuffer_api
  • schneider/bonding
  • schneider/bootloader-update-9a0d158
  • schneider/bsec
  • rahix/bma
  • rahix/bhi
  • schleicher-test
  • schneider/schleicher-test
  • freertos-btle
  • ch3/api-speed-eval2
  • schneider/mp-for-old-bl
  • ch3/leds-api
  • ch3/genapi-refactor
  • ch3/dual-core
  • dualcore
  • v0.0
22 results

vibra.c

Blame
  • Forked from card10 / firmware
    Source project has a limited visibility.
    fsusermount.c 8.65 KiB
    /*
     * This file is part of the Micro Python project, http://micropython.org/
     *
     * The MIT License (MIT)
     *
     * Copyright (c) 2014 Damien P. George
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    #include "py/mpconfig.h"
    #if MICROPY_FSUSERMOUNT
    #include <string.h>
    #include <errno.h>
    
    #include "py/nlr.h"
    #include "py/runtime.h"
    #include "py/mperrno.h"
    #if MICROPY_FATFS_OO
    #include "lib/oofatfs/ff.h"
    #else
    #include "lib/fatfs/ff.h"
    #endif
    #include "extmod/fsusermount.h"
    
    fs_user_mount_t *fatfs_mount_mkfs(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, bool mkfs) {
        static const mp_arg_t allowed_args[] = {
            { MP_QSTR_readonly, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
            { MP_QSTR_mkfs, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
        };
    
        // parse args
        mp_obj_t device = pos_args[0];
        mp_obj_t mount_point = pos_args[1];
        mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
        mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
    
        // get the mount point
        mp_uint_t mnt_len;
        const char *mnt_str = mp_obj_str_get_data(mount_point, &mnt_len);
    
        if (device == mp_const_none) {
            // umount
            FRESULT res = FR_NO_FILESYSTEM;
            for (size_t i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount)); ++i) {
                fs_user_mount_t *vfs = MP_STATE_PORT(fs_user_mount)[i];
                if (vfs != NULL && !memcmp(mnt_str, vfs->str, mnt_len + 1)) {
                    #if MICROPY_FATFS_OO
                    res = f_umount(&vfs->fatfs);
                    #else
                    res = f_mount(NULL, vfs->str, 0);
                    #endif
                    if (vfs->flags & FSUSER_FREE_OBJ) {
                        m_del_obj(fs_user_mount_t, vfs);
                    }
                    MP_STATE_PORT(fs_user_mount)[i] = NULL;
                    break;
                }
            }
            if (res != FR_OK) {
                nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "can't umount"));
            }
            return NULL;
        } else {
            // mount
            size_t i = 0;
            for (; i < MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount)); ++i) {
                if (MP_STATE_PORT(fs_user_mount)[i] == NULL) {
                    break;
                }
            }
            if (i == MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount))) {
                nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "too many devices mounted"));
            }
    
            // create new object
            fs_user_mount_t *vfs = m_new_obj(fs_user_mount_t);
            vfs->str = mnt_str;
            vfs->len = mnt_len;
            vfs->flags = FSUSER_FREE_OBJ;
            #if MICROPY_FATFS_OO
            vfs->fatfs.drv = vfs;
            #endif
    
            // load block protocol methods
            mp_load_method(device, MP_QSTR_readblocks, vfs->readblocks);
            mp_load_method_maybe(device, MP_QSTR_writeblocks, vfs->writeblocks);
            mp_load_method_maybe(device, MP_QSTR_ioctl, vfs->u.ioctl);
            if (vfs->u.ioctl[0] != MP_OBJ_NULL) {
                // device supports new block protocol, so indicate it
                vfs->flags |= FSUSER_HAVE_IOCTL;
            } else {
                // no ioctl method, so assume the device uses the old block protocol
                mp_load_method_maybe(device, MP_QSTR_sync, vfs->u.old.sync);
                mp_load_method(device, MP_QSTR_count, vfs->u.old.count);
            }
    
            // Read-only device indicated by writeblocks[0] == MP_OBJ_NULL.
            // User can specify read-only device by:
            //  1. readonly=True keyword argument
            //  2. nonexistent writeblocks method (then writeblocks[0] == MP_OBJ_NULL already)
            if (args[0].u_bool) {
                vfs->writeblocks[0] = MP_OBJ_NULL;
            }
    
            // Register the vfs object so that it can be found by the FatFS driver using
            // ff_get_ldnumber.  We don't register it any earlier than this point in case there
            // is an exception, in which case there would remain a partially mounted device.
            MP_STATE_PORT(fs_user_mount)[i] = vfs;
    
            // mount the block device (if mkfs, only pre-mount)
            FRESULT res;
            #if MICROPY_FATFS_OO
            if (mkfs) {
                res = FR_OK;
            } else {
                res = f_mount(&vfs->fatfs);
            }
            #else
            res = f_mount(&vfs->fatfs, vfs->str, !mkfs);
            #endif
    
            // check the result
            if (res == FR_OK) {
                if (mkfs) {
                    goto mkfs;
                }
            } else if (res == FR_NO_FILESYSTEM && args[1].u_bool) {
    mkfs:;
                #if MICROPY_FATFS_OO
                uint8_t working_buf[_MAX_SS];
                res = f_mkfs(&vfs->fatfs, FM_FAT | FM_SFD, 0, working_buf, sizeof(working_buf));
                #else
                res = f_mkfs(vfs->str, 1, 0);
                #endif
                if (res != FR_OK) {
    mkfs_error:
                    MP_STATE_PORT(fs_user_mount)[i] = NULL;
                    nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "can't mkfs"));
                }
                if (mkfs) {
                    // If requested to only mkfs, unmount pre-mounted device
                    #if MICROPY_FATFS_OO
                    res = FR_OK;
                    #else
                    res = f_mount(NULL, vfs->str, 0);
                    #endif
                    if (res != FR_OK) {
                        goto mkfs_error;
                    }
                    MP_STATE_PORT(fs_user_mount)[i] = NULL;
                    return NULL;
                }
            } else {
                MP_STATE_PORT(fs_user_mount)[i] = NULL;
                nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "can't mount"));
            }
    
            /*
            if (vfs->writeblocks[0] == MP_OBJ_NULL) {
                printf("mounted read-only");
            } else {
                printf("mounted read-write");
            }
            DWORD nclst;
            FATFS *fatfs;
            f_getfree(vfs->str, &nclst, &fatfs);
            printf(" on %s with %u bytes free\n", vfs->str, (uint)(nclst * fatfs->csize * 512));
            */
            return vfs;
        }
    }
    
    STATIC mp_obj_t fatfs_mount(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
        fatfs_mount_mkfs(n_args, pos_args, kw_args, false);
        return mp_const_none;
    }
    MP_DEFINE_CONST_FUN_OBJ_KW(fsuser_mount_obj, 2, fatfs_mount);
    
    mp_obj_t fatfs_umount(mp_obj_t bdev_or_path_in) {
        size_t i = 0;
        if (MP_OBJ_IS_STR(bdev_or_path_in)) {
            mp_uint_t mnt_len;
            const char *mnt_str = mp_obj_str_get_data(bdev_or_path_in, &mnt_len);
            for (; i < MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount)); ++i) {
                fs_user_mount_t *vfs = MP_STATE_PORT(fs_user_mount)[i];
                if (vfs != NULL && !memcmp(mnt_str, vfs->str, mnt_len + 1)) {
                    break;
                }
            }
        } else {
            for (; i < MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount)); ++i) {
                fs_user_mount_t *vfs = MP_STATE_PORT(fs_user_mount)[i];
                if (vfs != NULL && bdev_or_path_in == vfs->readblocks[1]) {
                    break;
                }
            }
        }
    
        if (i == MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount))) {
            mp_raise_OSError(MP_EINVAL);
        }
    
        fs_user_mount_t *vfs = MP_STATE_PORT(fs_user_mount)[i];
        FRESULT res;
        #if MICROPY_FATFS_OO
        res = f_umount(&vfs->fatfs);
        #else
        res = f_mount(NULL, vfs->str, 0);
        #endif
        if (vfs->flags & FSUSER_FREE_OBJ) {
            m_del_obj(fs_user_mount_t, vfs);
        }
        MP_STATE_PORT(fs_user_mount)[i] = NULL;
        if (res != FR_OK) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "can't umount"));
        }
        return mp_const_none;
    }
    MP_DEFINE_CONST_FUN_OBJ_1(fsuser_umount_obj, fatfs_umount);
    
    STATIC mp_obj_t fatfs_mkfs(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
        fatfs_mount_mkfs(n_args, pos_args, kw_args, true);
        return mp_const_none;
    }
    MP_DEFINE_CONST_FUN_OBJ_KW(fsuser_mkfs_obj, 2, fatfs_mkfs);
    
    #endif // MICROPY_FSUSERMOUNT