Skip to content
Snippets Groups Projects
parse.c 45.5 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * This file is part of the MicroPython project, http://micropython.org/
    
     *
     * The MIT License (MIT)
     *
    
     * Copyright (c) 2013-2017 Damien P. George
    
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     * THE SOFTWARE.
     */
    
    
    xbe's avatar
    xbe committed
    #include <stdbool.h>
    
    Damien's avatar
    Damien committed
    #include <stdint.h>
    #include <stdio.h>
    
    #include <unistd.h> // for ssize_t
    
    Damien's avatar
    Damien committed
    #include <assert.h>
    
    #include <string.h>
    
    Damien's avatar
    Damien committed
    
    
    #include "py/lexer.h"
    #include "py/parse.h"
    #include "py/parsenum.h"
    
    #include "py/runtime.h"
    
    #include "py/builtin.h"
    
    Damien's avatar
    Damien committed
    
    
    Damien's avatar
    Damien committed
    #define RULE_ACT_ARG_MASK       (0x0f)
    
    #define RULE_ACT_KIND_MASK      (0x30)
    #define RULE_ACT_ALLOW_IDENT    (0x40)
    #define RULE_ACT_ADD_BLANK      (0x80)
    
    Damien's avatar
    Damien committed
    #define RULE_ACT_OR             (0x10)
    #define RULE_ACT_AND            (0x20)
    #define RULE_ACT_LIST           (0x30)
    
    #define RULE_ARG_KIND_MASK      (0xf000)
    #define RULE_ARG_ARG_MASK       (0x0fff)
    #define RULE_ARG_TOK            (0x1000)
    #define RULE_ARG_RULE           (0x2000)
    
    #define RULE_ARG_OPT_RULE       (0x3000)
    
    Damien's avatar
    Damien committed
    
    // (un)comment to use rule names; for debugging
    //#define USE_RULE_NAME (1)
    
    enum {
    
    // define rules with a compile function
    
    #define DEF_RULE(rule, comp, kind, ...) RULE_##rule,
    
    #define DEF_RULE_NC(rule, kind, ...)
    
    #include "py/grammar.h"
    
    Damien's avatar
    Damien committed
    #undef DEF_RULE
    
        RULE_const_object, // special node for a constant, generic Python object
    
    
    // define rules without a compile function
    #define DEF_RULE(rule, comp, kind, ...)
    #define DEF_RULE_NC(rule, kind, ...) RULE_##rule,
    #include "py/grammar.h"
    #undef DEF_RULE
    #undef DEF_RULE_NC
    
    Damien's avatar
    Damien committed
    };
    
    
    // Define an array of actions corresponding to each rule
    STATIC const uint8_t rule_act_table[] = {
    
    Damien's avatar
    Damien committed
    #define or(n)                   (RULE_ACT_OR | n)
    #define and(n)                  (RULE_ACT_AND | n)
    
    #define and_ident(n)            (RULE_ACT_AND | n | RULE_ACT_ALLOW_IDENT)
    #define and_blank(n)            (RULE_ACT_AND | n | RULE_ACT_ADD_BLANK)
    
    Damien's avatar
    Damien committed
    #define one_or_more             (RULE_ACT_LIST | 2)
    #define list                    (RULE_ACT_LIST | 1)
    #define list_with_end           (RULE_ACT_LIST | 3)
    
    
    #define DEF_RULE(rule, comp, kind, ...) kind,
    #define DEF_RULE_NC(rule, kind, ...)
    
    #include "py/grammar.h"
    
    #undef DEF_RULE
    #undef DEF_RULE_NC
    
        0, // RULE_const_object
    
    #define DEF_RULE(rule, comp, kind, ...)
    #define DEF_RULE_NC(rule, kind, ...) kind,
    #include "py/grammar.h"
    #undef DEF_RULE
    #undef DEF_RULE_NC
    
    
    Damien's avatar
    Damien committed
    #undef or
    #undef and
    
    #undef and_ident
    #undef and_blank
    #undef one_or_more
    
    Damien's avatar
    Damien committed
    #undef list
    #undef list_with_end
    
    // Define the argument data for each rule, as a combined array
    STATIC const uint16_t rule_arg_combined_table[] = {
    
    #define tok(t)                  (RULE_ARG_TOK | MP_TOKEN_##t)
    #define rule(r)                 (RULE_ARG_RULE | RULE_##r)
    #define opt_rule(r)             (RULE_ARG_OPT_RULE | RULE_##r)
    
    
    #define DEF_RULE(rule, comp, kind, ...) __VA_ARGS__,
    #define DEF_RULE_NC(rule, kind, ...)
    #include "py/grammar.h"
    #undef DEF_RULE
    #undef DEF_RULE_NC
    
    #define DEF_RULE(rule, comp, kind, ...)
    #define DEF_RULE_NC(rule, kind, ...)  __VA_ARGS__,
    
    #include "py/grammar.h"
    #undef DEF_RULE
    #undef DEF_RULE_NC
    
    
    Damien's avatar
    Damien committed
    #undef tok
    #undef rule
    #undef opt_rule
    
    // Macro to create a list of N identifiers where N is the number of variable arguments to the macro
    #define RULE_EXPAND(x) x
    
    #define RULE_PADDING(rule, ...) RULE_PADDING2(rule, __VA_ARGS__, RULE_PADDING_IDS(rule))
    
    #define RULE_PADDING2(rule, ...) RULE_EXPAND(RULE_PADDING3(rule, __VA_ARGS__))
    #define RULE_PADDING3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, ...) __VA_ARGS__
    
    #define RULE_PADDING_IDS(r) PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r,
    
    
    // Use an enum to create constants specifying how much room a rule takes in rule_arg_combined_table
    
    #define DEF_RULE(rule, comp, kind, ...) RULE_PADDING(rule, __VA_ARGS__)
    
    #define DEF_RULE_NC(rule, kind, ...)
    #include "py/grammar.h"
    #undef DEF_RULE
    #undef DEF_RULE_NC
    #define DEF_RULE(rule, comp, kind, ...)
    
    #define DEF_RULE_NC(rule, kind, ...) RULE_PADDING(rule, __VA_ARGS__)
    
    #include "py/grammar.h"
    #undef DEF_RULE
    #undef DEF_RULE_NC
    };
    
    Damien's avatar
    Damien committed
    
    
    // Macro to compute the start of a rule in rule_arg_combined_table
    #define RULE_ARG_OFFSET(rule, ...) RULE_ARG_OFFSET2(rule, __VA_ARGS__, RULE_ARG_OFFSET_IDS(rule))
    #define RULE_ARG_OFFSET2(rule, ...) RULE_EXPAND(RULE_ARG_OFFSET3(rule, __VA_ARGS__))
    #define RULE_ARG_OFFSET3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, ...) _13
    #define RULE_ARG_OFFSET_IDS(r) PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r, PAD0_##r,
    
    
    // Use the above enum values to create a table of offsets for each rule's arg
    // data, which indexes rule_arg_combined_table.  The offsets require 9 bits of
    // storage but only the lower 8 bits are stored here.  The 9th bit is computed
    // in get_rule_arg using the FIRST_RULE_WITH_OFFSET_ABOVE_255 constant.
    STATIC const uint8_t rule_arg_offset_table[] = {
    
    #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff,
    
    #define DEF_RULE_NC(rule, kind, ...)
    #include "py/grammar.h"
    #undef DEF_RULE
    #undef DEF_RULE_NC
    
    #define DEF_RULE(rule, comp, kind, ...)
    
    #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff,
    
    #include "py/grammar.h"
    
    Damien's avatar
    Damien committed
    #undef DEF_RULE
    
    Damien's avatar
    Damien committed
    };
    
    
    // Define a constant that's used to determine the 9th bit of the values in rule_arg_offset_table
    static const size_t FIRST_RULE_WITH_OFFSET_ABOVE_255 =
    
    #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule :
    
    #define DEF_RULE_NC(rule, kind, ...)
    #include "py/grammar.h"
    #undef DEF_RULE
    #undef DEF_RULE_NC
    #define DEF_RULE(rule, comp, kind, ...)
    
    #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule :
    
    #include "py/grammar.h"
    #undef DEF_RULE
    #undef DEF_RULE_NC
    0;
    
    
    #if USE_RULE_NAME
    // Define an array of rule names corresponding to each rule
    STATIC const char *const rule_name_table[] = {
    #define DEF_RULE(rule, comp, kind, ...) #rule,
    #define DEF_RULE_NC(rule, kind, ...)
    #include "py/grammar.h"
    #undef DEF_RULE
    #undef DEF_RULE_NC
        "", // RULE_const_object
    #define DEF_RULE(rule, comp, kind, ...)
    #define DEF_RULE_NC(rule, kind, ...) #rule,
    #include "py/grammar.h"
    #undef DEF_RULE
    #undef DEF_RULE_NC
    };
    #endif
    
    
    Damien's avatar
    Damien committed
    typedef struct _rule_stack_t {
    
        size_t src_line : 8 * sizeof(size_t) - 8; // maximum bits storing source line number
        size_t rule_id : 8; // this must be large enough to fit largest rule number
        size_t arg_i; // this dictates the maximum nodes in a "list" of things
    
    Damien's avatar
    Damien committed
    } rule_stack_t;
    
    
            struct _mp_parse_chunk_t *next;
        } union_;
        byte data[];
    } mp_parse_chunk_t;
    
    
    Damien's avatar
    Damien committed
    typedef struct _parser_t {
    
        size_t rule_stack_alloc;
        size_t rule_stack_top;
    
    Damien's avatar
    Damien committed
        rule_stack_t *rule_stack;
    
    
        size_t result_stack_alloc;
        size_t result_stack_top;
    
        mp_parse_node_t *result_stack;
    
    
        mp_parse_tree_t tree;
        mp_parse_chunk_t *cur_chunk;
    
    Damien's avatar
    Damien committed
    
    
        #if MICROPY_COMP_CONST
        mp_map_t consts;
        #endif
    } parser_t;
    
    STATIC const uint16_t *get_rule_arg(uint8_t r_id) {
        size_t off = rule_arg_offset_table[r_id];
        if (r_id >= FIRST_RULE_WITH_OFFSET_ABOVE_255) {
            off |= 0x100;
        }
        return &rule_arg_combined_table[off];
    }
    
    
    STATIC void *parser_alloc(parser_t *parser, size_t num_bytes) {
        // use a custom memory allocator to store parse nodes sequentially in large chunks
    
        mp_parse_chunk_t *chunk = parser->cur_chunk;
    
        if (chunk != NULL && chunk->union_.used + num_bytes > chunk->alloc) {
            // not enough room at end of previously allocated chunk so try to grow
            mp_parse_chunk_t *new_data = (mp_parse_chunk_t*)m_renew_maybe(byte, chunk,
                sizeof(mp_parse_chunk_t) + chunk->alloc,
                sizeof(mp_parse_chunk_t) + chunk->alloc + num_bytes, false);
            if (new_data == NULL) {
                // could not grow existing memory; shrink it to fit previous
    
                (void)m_renew_maybe(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc,
                    sizeof(mp_parse_chunk_t) + chunk->union_.used, false);
    
                chunk->alloc = chunk->union_.used;
                chunk->union_.next = parser->tree.chunk;
                parser->tree.chunk = chunk;
                chunk = NULL;
            } else {
                // could grow existing memory
                chunk->alloc += num_bytes;
            }
        }
    
        if (chunk == NULL) {
            // no previous chunk, allocate a new chunk
            size_t alloc = MICROPY_ALLOC_PARSE_CHUNK_INIT;
            if (alloc < num_bytes) {
                alloc = num_bytes;
            }
            chunk = (mp_parse_chunk_t*)m_new(byte, sizeof(mp_parse_chunk_t) + alloc);
            chunk->alloc = alloc;
            chunk->union_.used = 0;
            parser->cur_chunk = chunk;
        }
    
        byte *ret = chunk->data + chunk->union_.used;
        chunk->union_.used += num_bytes;
        return ret;
    }
    
    
    STATIC void push_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t arg_i) {
    
    Damien's avatar
    Damien committed
        if (parser->rule_stack_top >= parser->rule_stack_alloc) {
    
            rule_stack_t *rs = m_renew(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC);
    
            parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC;
    
    Damien's avatar
    Damien committed
        }
    
        rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++];
        rs->src_line = src_line;
    
    Damien's avatar
    Damien committed
    }
    
    
    STATIC void push_rule_from_arg(parser_t *parser, size_t arg) {
    
    Damien's avatar
    Damien committed
        assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE);
    
        size_t rule_id = arg & RULE_ARG_ARG_MASK;
    
        push_rule(parser, parser->lexer->tok_line, rule_id, 0);
    
    Damien's avatar
    Damien committed
    }
    
    
    STATIC uint8_t pop_rule(parser_t *parser, size_t *arg_i, size_t *src_line) {
    
    Damien's avatar
    Damien committed
        parser->rule_stack_top -= 1;
    
        uint8_t rule_id = parser->rule_stack[parser->rule_stack_top].rule_id;
    
    Damien's avatar
    Damien committed
        *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i;
    
        *src_line = parser->rule_stack[parser->rule_stack_top].src_line;
    
    Damien's avatar
    Damien committed
    }
    
    
    bool mp_parse_node_is_const_false(mp_parse_node_t pn) {
        return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_FALSE)
            || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) == 0);
    }
    
    bool mp_parse_node_is_const_true(mp_parse_node_t pn) {
        return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_TRUE)
            || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) != 0);
    }
    
    
    bool mp_parse_node_get_int_maybe(mp_parse_node_t pn, mp_obj_t *o) {
        if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
            *o = MP_OBJ_NEW_SMALL_INT(MP_PARSE_NODE_LEAF_SMALL_INT(pn));
            return true;
        } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) {
            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
            #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
            // nodes are 32-bit pointers, but need to extract 64-bit object
            *o = (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32);
            #else
            *o = (mp_obj_t)pns->nodes[0];
            #endif
    
    int mp_parse_node_extract_list(mp_parse_node_t *pn, size_t pn_kind, mp_parse_node_t **nodes) {
    
        if (MP_PARSE_NODE_IS_NULL(*pn)) {
            *nodes = NULL;
            return 0;
        } else if (MP_PARSE_NODE_IS_LEAF(*pn)) {
            *nodes = pn;
            return 1;
        } else {
            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)(*pn);
            if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) {
                *nodes = pn;
                return 1;
            } else {
                *nodes = pns->nodes;
                return MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
            }
        }
    }
    
    
    #if MICROPY_DEBUG_PRINTERS
    
    void mp_parse_node_print(mp_parse_node_t pn, size_t indent) {
    
        if (MP_PARSE_NODE_IS_STRUCT(pn)) {
            printf("[% 4d] ", (int)((mp_parse_node_struct_t*)pn)->source_line);
        } else {
            printf("       ");
        }
    
        for (size_t i = 0; i < indent; i++) {
    
    Damien's avatar
    Damien committed
            printf(" ");
        }
    
        if (MP_PARSE_NODE_IS_NULL(pn)) {
    
    Damien's avatar
    Damien committed
            printf("NULL\n");
    
        } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
    
            mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
    
        } else if (MP_PARSE_NODE_IS_LEAF(pn)) {
    
            uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
    
            switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
                case MP_PARSE_NODE_ID: printf("id(%s)\n", qstr_str(arg)); break;
                case MP_PARSE_NODE_STRING: printf("str(%s)\n", qstr_str(arg)); break;
                case MP_PARSE_NODE_BYTES: printf("bytes(%s)\n", qstr_str(arg)); break;
    
                default:
                    assert(MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN);
                    printf("tok(%u)\n", (uint)arg); break;
    
    Damien's avatar
    Damien committed
            }
        } else {
    
            // node must be a mp_parse_node_struct_t
    
            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
    
            if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_const_object) {
    
                #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
                printf("literal const(%016llx)\n", (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32));
                #else
    
                printf("literal const(%p)\n", (mp_obj_t)pns->nodes[0]);
    
                size_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
    
                #if USE_RULE_NAME
                printf("%s(%u) (n=%u)\n", rule_name_table[MP_PARSE_NODE_STRUCT_KIND(pns)], (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
                #else
    
                printf("rule(%u) (n=%u)\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
    
                    mp_parse_node_print(pns->nodes[i], indent + 2);
                }
    
    Damien's avatar
    Damien committed
            }
        }
    }
    
    #endif // MICROPY_DEBUG_PRINTERS
    
    Damien's avatar
    Damien committed
    
    /*
    
    STATIC void result_stack_show(parser_t *parser) {
    
    Damien's avatar
    Damien committed
        printf("result stack, most recent first\n");
    
        for (ssize_t i = parser->result_stack_top - 1; i >= 0; i--) {
    
            mp_parse_node_print(parser->result_stack[i], 0);
    
    Damien's avatar
    Damien committed
        }
    }
    */
    
    
    STATIC mp_parse_node_t pop_result(parser_t *parser) {
    
    Damien's avatar
    Damien committed
        assert(parser->result_stack_top > 0);
        return parser->result_stack[--parser->result_stack_top];
    }
    
    
    STATIC mp_parse_node_t peek_result(parser_t *parser, size_t pos) {
    
    Damien's avatar
    Damien committed
        assert(parser->result_stack_top > pos);
        return parser->result_stack[parser->result_stack_top - 1 - pos];
    }
    
    
    STATIC void push_result_node(parser_t *parser, mp_parse_node_t pn) {
    
        if (parser->result_stack_top >= parser->result_stack_alloc) {
    
            mp_parse_node_t *stack = m_renew(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc + MICROPY_ALLOC_PARSE_RESULT_INC);
    
            parser->result_stack = stack;
    
            parser->result_stack_alloc += MICROPY_ALLOC_PARSE_RESULT_INC;
    
    Damien's avatar
    Damien committed
        parser->result_stack[parser->result_stack_top++] = pn;
    }
    
    
    STATIC mp_parse_node_t make_node_const_object(parser_t *parser, size_t src_line, mp_obj_t obj) {
    
        mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_obj_t));
    
        pn->source_line = src_line;
    
        #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
        // nodes are 32-bit pointers, but need to store 64-bit object
        pn->kind_num_nodes = RULE_const_object | (2 << 8);
        pn->nodes[0] = (uint64_t)obj;
        pn->nodes[1] = (uint64_t)obj >> 32;
        #else
    
        pn->kind_num_nodes = RULE_const_object | (1 << 8);
    
        return (mp_parse_node_t)pn;
    
    STATIC mp_parse_node_t mp_parse_node_new_small_int_checked(parser_t *parser, mp_obj_t o_val) {
        (void)parser;
        mp_int_t val = MP_OBJ_SMALL_INT_VALUE(o_val);
        #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
        // A parse node is only 32-bits and the small-int value must fit in 31-bits
        if (((val ^ (val << 1)) & 0xffffffff80000000) != 0) {
            return make_node_const_object(parser, 0, o_val);
        }
        #endif
        return mp_parse_node_new_small_int(val);
    }
    
    
    STATIC void push_result_token(parser_t *parser, uint8_t rule_id) {
    
        mp_lexer_t *lex = parser->lexer;
        if (lex->tok_kind == MP_TOKEN_NAME) {
    
            qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
            #if MICROPY_COMP_CONST
    
            // if name is a standalone identifier, look it up in the table of dynamic constants
            mp_map_elem_t *elem;
    
                && (elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP)) != NULL) {
    
                if (mp_obj_is_small_int(elem->value)) {
    
                    pn = mp_parse_node_new_small_int_checked(parser, elem->value);
    
                } else {
                    pn = make_node_const_object(parser, lex->tok_line, elem->value);
                }
    
                pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id);
            }
    
            pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id);
            #endif
    
        } else if (lex->tok_kind == MP_TOKEN_INTEGER) {
            mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex);
    
                pn = mp_parse_node_new_small_int_checked(parser, o);
    
    Damien's avatar
    Damien committed
            } else {
    
                pn = make_node_const_object(parser, lex->tok_line, o);
    
    Damien's avatar
    Damien committed
            }
    
        } else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) {
            mp_obj_t o = mp_parse_num_decimal(lex->vstr.buf, lex->vstr.len, true, false, lex);
            pn = make_node_const_object(parser, lex->tok_line, o);
    
        } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) {
            // Don't automatically intern all strings/bytes.  doc strings (which are usually large)
    
            // will be discarded by the compiler, and so we shouldn't intern them.
            qstr qst = MP_QSTR_NULL;
    
            if (lex->vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) {
    
                // intern short strings
    
                qst = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
    
            } else {
                // check if this string is already interned
    
                qst = qstr_find_strn(lex->vstr.buf, lex->vstr.len);
    
            }
            if (qst != MP_QSTR_NULL) {
                // qstr exists, make a leaf node
    
                pn = mp_parse_node_new_leaf(lex->tok_kind == MP_TOKEN_STRING ? MP_PARSE_NODE_STRING : MP_PARSE_NODE_BYTES, qst);
    
                // not interned, make a node holding a pointer to the string/bytes object
    
                    lex->tok_kind == MP_TOKEN_STRING ? &mp_type_str : &mp_type_bytes,
                    (const byte*)lex->vstr.buf, lex->vstr.len);
                pn = make_node_const_object(parser, lex->tok_line, o);
    
    Damien's avatar
    Damien committed
        } else {
    
            pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, lex->tok_kind);
    
    Damien's avatar
    Damien committed
        }
        push_result_node(parser, pn);
    }
    
    
    #if MICROPY_COMP_MODULE_CONST
    
    STATIC const mp_rom_map_elem_t mp_constants_table[] = {
    
        #if MICROPY_PY_UERRNO
        { MP_ROM_QSTR(MP_QSTR_errno), MP_ROM_PTR(&mp_module_uerrno) },
        #endif
    
        #if MICROPY_PY_UCTYPES
    
        { MP_ROM_QSTR(MP_QSTR_uctypes), MP_ROM_PTR(&mp_module_uctypes) },
    
        #endif
        // Extra constants as defined by a port
        MICROPY_PORT_CONSTANTS
    };
    STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table);
    #endif
    
    
    STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args);
    
    #if MICROPY_COMP_CONST_FOLDING
    
    STATIC bool fold_logical_constants(parser_t *parser, uint8_t rule_id, size_t *num_args) {
        if (rule_id == RULE_or_test
            || rule_id == RULE_and_test) {
    
            // folding for binary logical ops: or and
            size_t copy_to = *num_args;
            for (size_t i = copy_to; i > 0;) {
                mp_parse_node_t pn = peek_result(parser, --i);
                parser->result_stack[parser->result_stack_top - copy_to] = pn;
                if (i == 0) {
                    // always need to keep the last value
                    break;
                }
    
                    if (mp_parse_node_is_const_true(pn)) {
                        //
                        break;
                    } else if (!mp_parse_node_is_const_false(pn)) {
                        copy_to -= 1;
                    }
                } else {
                    // RULE_and_test
                    if (mp_parse_node_is_const_false(pn)) {
                        break;
                    } else if (!mp_parse_node_is_const_true(pn)) {
                        copy_to -= 1;
                    }
                }
            }
            copy_to -= 1; // copy_to now contains number of args to pop
    
            // pop and discard all the short-circuited expressions
            for (size_t i = 0; i < copy_to; ++i) {
                pop_result(parser);
            }
            *num_args -= copy_to;
    
            // we did a complete folding if there's only 1 arg left
            return *num_args == 1;
    
    
        } else if (rule_id == RULE_not_test_2) {
    
            // folding for unary logical op: not
            mp_parse_node_t pn = peek_result(parser, 0);
            if (mp_parse_node_is_const_false(pn)) {
                pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_TRUE);
            } else if (mp_parse_node_is_const_true(pn)) {
                pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_FALSE);
            } else {
                return false;
            }
            pop_result(parser);
            push_result_node(parser, pn);
            return true;
        }
    
        return false;
    }
    
    
    STATIC bool fold_constants(parser_t *parser, uint8_t rule_id, size_t num_args) {
    
        // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4
        // it does not do partial folding, eg 1 + 2 + x -> 3 + x
    
    
        if (rule_id == RULE_expr
            || rule_id == RULE_xor_expr
            || rule_id == RULE_and_expr) {
    
            // folding for binary ops: | ^ &
            mp_parse_node_t pn = peek_result(parser, num_args - 1);
    
            if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
    
            } else if (rule_id == RULE_xor_expr) {
    
                op = MP_BINARY_OP_XOR;
            } else {
                op = MP_BINARY_OP_AND;
            }
    
            for (ssize_t i = num_args - 2; i >= 0; --i) {
    
                pn = peek_result(parser, i);
    
                mp_obj_t arg1;
                if (!mp_parse_node_get_int_maybe(pn, &arg1)) {
    
                arg0 = mp_binary_op(op, arg0, arg1);
    
        } else if (rule_id == RULE_shift_expr
            || rule_id == RULE_arith_expr
            || rule_id == RULE_term) {
    
            // folding for binary ops: << >> + - * / % //
            mp_parse_node_t pn = peek_result(parser, num_args - 1);
    
            if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
    
            for (ssize_t i = num_args - 2; i >= 1; i -= 2) {
    
                pn = peek_result(parser, i - 1);
    
                mp_obj_t arg1;
                if (!mp_parse_node_get_int_maybe(pn, &arg1)) {
    
                    return false;
                }
                mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i));
    
                static const uint8_t token_to_op[] = {
                    MP_BINARY_OP_ADD,
                    MP_BINARY_OP_SUBTRACT,
                    MP_BINARY_OP_MULTIPLY,
                    255,//MP_BINARY_OP_POWER,
                    255,//MP_BINARY_OP_TRUE_DIVIDE,
                    MP_BINARY_OP_FLOOR_DIVIDE,
                    MP_BINARY_OP_MODULO,
                    255,//MP_BINARY_OP_LESS
                    MP_BINARY_OP_LSHIFT,
                    255,//MP_BINARY_OP_MORE
                    MP_BINARY_OP_RSHIFT,
                };
                mp_binary_op_t op = token_to_op[tok - MP_TOKEN_OP_PLUS];
    
                if (op == (mp_binary_op_t)255) {
    
                }
                int rhs_sign = mp_obj_int_sign(arg1);
                if (op <= MP_BINARY_OP_RSHIFT) {
                    // << and >> can't have negative rhs
                    if (rhs_sign < 0) {
    
                } else if (op >= MP_BINARY_OP_FLOOR_DIVIDE) {
                    // % and // can't have zero rhs
                    if (rhs_sign == 0) {
    
                arg0 = mp_binary_op(op, arg0, arg1);
    
        } else if (rule_id == RULE_factor_2) {
    
            // folding for unary ops: + - ~
            mp_parse_node_t pn = peek_result(parser, 0);
    
            if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
    
                return false;
            }
            mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1));
    
            if (tok == MP_TOKEN_OP_PLUS) {
    
            } else if (tok == MP_TOKEN_OP_MINUS) {
    
            } else {
                assert(tok == MP_TOKEN_OP_TILDE); // should be
    
        } else if (rule_id == RULE_expr_stmt) {
    
            mp_parse_node_t pn1 = peek_result(parser, 0);
            if (!MP_PARSE_NODE_IS_NULL(pn1)
                && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign)
                || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) {
                // this node is of the form <x> = <y>
                mp_parse_node_t pn0 = peek_result(parser, 1);
                if (MP_PARSE_NODE_IS_ID(pn0)
    
                    && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_atom_expr_normal)
    
                    && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t*)pn1)->nodes[0])
                    && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t*)pn1)->nodes[0]) == MP_QSTR_const
                    && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t*)pn1)->nodes[1], RULE_trailer_paren)
                    ) {
                    // code to assign dynamic constants: id = const(value)
    
                    // get the id
                    qstr id = MP_PARSE_NODE_LEAF_ARG(pn0);
    
                    // get the value
                    mp_parse_node_t pn_value = ((mp_parse_node_struct_t*)((mp_parse_node_struct_t*)pn1)->nodes[1])->nodes[0];
    
                    mp_obj_t value;
                    if (!mp_parse_node_get_int_maybe(pn_value, &value)) {
    
                        mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
                            "constant must be an integer");
                        mp_obj_exception_add_traceback(exc, parser->lexer->source_name,
                            ((mp_parse_node_struct_t*)pn1)->source_line, MP_QSTR_NULL);
                        nlr_raise(exc);
    
                    }
    
                    // store the value in the table of dynamic constants
                    mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
                    assert(elem->value == MP_OBJ_NULL);
    
                    // If the constant starts with an underscore then treat it as a private
                    // variable and don't emit any code to store the value to the id.
                    if (qstr_str(id)[0] == '_') {
                        pop_result(parser); // pop const(value)
                        pop_result(parser); // pop id
    
                        push_result_rule(parser, 0, RULE_pass_stmt, 0); // replace with "pass"
    
                    // replace const(value) with value
                    pop_result(parser);
                    push_result_node(parser, pn_value);
    
                    // finished folding this assignment, but we still want it to be part of the tree
                    return false;
                }
            }
            return false;
        #endif
    
        #if MICROPY_COMP_MODULE_CONST
    
        } else if (rule_id == RULE_atom_expr_normal) {
    
            mp_parse_node_t pn0 = peek_result(parser, 1);
            mp_parse_node_t pn1 = peek_result(parser, 0);
    
            if (!(MP_PARSE_NODE_IS_ID(pn0)
    
                && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period))) {
    
                return false;
            }
            // id1.id2
            // look it up in constant table, see if it can be replaced with an integer
            mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pn1;
            assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
            qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0);
            qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]);
            mp_map_elem_t *elem = mp_map_lookup((mp_map_t*)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP);
            if (elem == NULL) {
                return false;
            }
            mp_obj_t dest[2];
            mp_load_method_maybe(elem->value, q_attr, dest);
    
            if (!(dest[0] != MP_OBJ_NULL && mp_obj_is_int(dest[0]) && dest[1] == MP_OBJ_NULL)) {
    
        #endif
    
        } else {
            return false;
        }
    
        // success folding this rule
    
    
        for (size_t i = num_args; i > 0; i--) {
    
            push_result_node(parser, mp_parse_node_new_small_int_checked(parser, arg0));
    
        } else {
            // TODO reuse memory for parse node struct?
            push_result_node(parser, make_node_const_object(parser, 0, arg0));
        }
    
    STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args) {
    
        // optimise away parenthesis around an expression if possible
    
            // there should be just 1 arg for this rule
            mp_parse_node_t pn = peek_result(parser, 0);
            if (MP_PARSE_NODE_IS_NULL(pn)) {
                // need to keep parenthesis for ()
            } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_testlist_comp)) {
                // need to keep parenthesis for (a, b, ...)
            } else {
                // parenthesis around a single expression, so it's just the expression
                return;
            }
        }
    
    
        #if MICROPY_COMP_CONST_FOLDING
    
        if (fold_logical_constants(parser, rule_id, &num_args)) {
    
            // we folded this rule so return straight away
            return;
        }
    
        if (fold_constants(parser, rule_id, num_args)) {
    
            // we folded this rule so return straight away
            return;
        }
        #endif
    
    
        mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * num_args);
    
        pn->source_line = src_line;
    
        pn->kind_num_nodes = (rule_id & 0xff) | (num_args << 8);
    
        for (size_t i = num_args; i > 0; i--) {
    
    Damien's avatar
    Damien committed
            pn->nodes[i - 1] = pop_result(parser);
        }
    
        push_result_node(parser, (mp_parse_node_t)pn);
    
    Damien's avatar
    Damien committed
    }
    
    
    mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) {
    
        // initialise parser and allocate memory for its stacks
    
        parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT;
    
        parser.rule_stack_top = 0;
    
        parser.rule_stack = m_new(rule_stack_t, parser.rule_stack_alloc);
    
    Damien's avatar
    Damien committed
    
    
        parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT;
    
        parser.result_stack_top = 0;
    
        parser.result_stack = m_new(mp_parse_node_t, parser.result_stack_alloc);
    
    Damien's avatar
    Damien committed
    
    
        parser.tree.chunk = NULL;
        parser.cur_chunk = NULL;
    
    
        #if MICROPY_COMP_CONST
        mp_map_init(&parser.consts, 0);
        #endif
    
    
        // work out the top-level rule to use, and push it on the stack
    
    Damien's avatar
    Damien committed
        switch (input_kind) {
    
            case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break;
    
    Damien George's avatar
    Damien George committed
            case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break;
    
    Damien's avatar
    Damien committed
            default: top_level_rule = RULE_file_input;
        }
    
        push_rule(&parser, lex->tok_line, top_level_rule, 0);
    
    Damien's avatar
    Damien committed
    
    
    Damien's avatar
    Damien committed
        bool backtrack = false;
    
        for (;;) {
            next_rule:
    
            if (parser.rule_stack_top == 0) {
    
    Damien's avatar
    Damien committed
                break;
            }
    
    
            // Pop the next rule to process it
            size_t i; // state for the current rule
            size_t rule_src_line; // source line for the first token matched by the current rule
            uint8_t rule_id = pop_rule(&parser, &i, &rule_src_line);
            uint8_t rule_act = rule_act_table[rule_id];
    
            const uint16_t *rule_arg = get_rule_arg(rule_id);
    
            size_t n = rule_act & RULE_ACT_ARG_MASK;
    
    Damien's avatar
    Damien committed
    
    
    Damien's avatar
    Damien committed
            // debugging
    
            printf("depth=" UINT_FMT " ", parser.rule_stack_top);
    
            for (int j = 0; j < parser.rule_stack_top; ++j) {
    
    Damien's avatar
    Damien committed
                printf(" ");
            }
    
            printf("%s n=" UINT_FMT " i=" UINT_FMT " bt=%d\n", rule_name_table[rule_id], n, i, backtrack);
            #endif
    
    Damien's avatar
    Damien committed
    
    
            switch (rule_act & RULE_ACT_KIND_MASK) {
    
    Damien's avatar
    Damien committed
                case RULE_ACT_OR:
                    if (i > 0 && !backtrack) {
                        goto next_rule;
                    } else {
                        backtrack = false;
                    }
    
                        uint16_t kind = rule_arg[i] & RULE_ARG_KIND_MASK;
    
                            if (lex->tok_kind == (rule_arg[i] & RULE_ARG_ARG_MASK)) {
                                push_result_token(&parser, rule_id);
    
    Damien's avatar
    Damien committed
                                goto next_rule;
    
    Damien's avatar
    Damien committed
                        } else {
    
                            assert(kind == RULE_ARG_RULE);
                            if (i + 1 < n) {
    
                                push_rule(&parser, rule_src_line, rule_id, i + 1); // save this or-rule
    
                            push_rule_from_arg(&parser, rule_arg[i]); // push child of or-rule
    
    Damien's avatar
    Damien committed
                            goto next_rule;
                        }
                    }
    
    Damien's avatar
    Damien committed
                    break;
    
    
    Damien's avatar
    Damien committed
    
                    // failed, backtrack if we can, else syntax error
                    if (backtrack) {
                        assert(i > 0);
    
                        if ((rule_arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) {
    
    Damien's avatar
    Damien committed
                            // an optional rule that failed, so continue with next arg
    
                            push_result_node(&parser, MP_PARSE_NODE_NULL);
    
    Damien's avatar
    Damien committed
                            backtrack = false;
                        } else {
                            // a mandatory rule that failed, so propagate backtrack
                            if (i > 1) {
                                // already eaten tokens so can't backtrack
                                goto syntax_error;
                            } else {
                                goto next_rule;
                            }
                        }
                    }
    
                    // progress through the rule
                    for (; i < n; ++i) {
    
                        if ((rule_arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
    
                            // need to match a token
    
                            mp_token_kind_t tok_kind = rule_arg[i] & RULE_ARG_ARG_MASK;
    
                            if (lex->tok_kind == tok_kind) {
                                // matched token
                                if (tok_kind == MP_TOKEN_NAME) {
    
                                    push_result_token(&parser, rule_id);
    
                                }
                                mp_lexer_to_next(lex);
                            } else {
                                // failed to match token
                                if (i > 0) {
                                    // already eaten tokens so can't backtrack
                                    goto syntax_error;
    
    Damien's avatar
    Damien committed
                                } else {
    
                                    // this rule failed, so backtrack
                                    backtrack = true;
                                    goto next_rule;
    
    Damien's avatar
    Damien committed
                                }
    
                            push_rule(&parser, rule_src_line, rule_id, i + 1); // save this and-rule
                            push_rule_from_arg(&parser, rule_arg[i]); // push child of and-rule
    
    Damien's avatar
    Damien committed
                        }
                    }
    
                    assert(i == n);
    
                    // matched the rule, so now build the corresponding parse_node
    
    
                    #if !MICROPY_ENABLE_DOC_STRING
    
                    // this code discards lonely statements, such as doc strings
    
                    if (input_kind != MP_PARSE_SINGLE_INPUT && rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) {
    
                        mp_parse_node_t p = peek_result(&parser, 1);
    
                        if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p))
                            || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_const_object)) {
    
                            pop_result(&parser); // MP_PARSE_NODE_NULL
    
                            pop_result(&parser); // const expression (leaf or RULE_const_object)
                            // Pushing the "pass" rule here will overwrite any RULE_const_object
                            // entry that was on the result stack, allowing the GC to reclaim
                            // the memory from the const object when needed.
    
                            push_result_rule(&parser, rule_src_line, RULE_pass_stmt, 0);
    
                    // count number of arguments for the parse node
                    i = 0;
    
                        if ((rule_arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                            mp_token_kind_t tok_kind = rule_arg[x] & RULE_ARG_ARG_MASK;
    
                            if (tok_kind == MP_TOKEN_NAME) {
                                // only tokens which were names are pushed to stack
                                i += 1;
                                num_not_nil += 1;
                            }
                        } else {